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Spectra of the Upper Triangular Double-Band Matrix A2P on

the Sequence Space bs

Suad H. Abu-Janah® and Salem M. Zyaina
Faculty of Science, EImergib University, Msallata, Libya
*Email: suadabujanah@yahoo.com

Abstract:

Many authors have investigated the fine spectrum of the generalized difference operator on different
sequence spaces. Recently, spectra of the operator A, on the sequence space bv, has been determined.
Our plan in this work is to get new results associated with the spectra of the operator A2P on the sequence
space bs by using the results in[4]. Moreover, the purpose of this work is to study a wider class of
operators on specific space which has not been covered before in the literature.

Keywords: Spectrum, Infinite matrices, Sequence spaces.
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1. Review of the literature and well-known the sequence space ¢,,where (1 < p < «).
results Also, see[2,5,6,7].
The fine structure of the spectrum of the

Now, we introduce some definitions and
upper triangular double-band matrices have

notations.
been studied in some special cases. For
example; in 2010, the fine spectrum of The set of all complex sequences is denoted
upper triangular double-band matrix U(r, s) by w, C denotes the complex field and N is
as operator on the sequence spaces c, and the set of nonnegative integers.

c was studied by Karakaya and Altun [8].
Recently, El-Shabrawy and Abu-Janah[3]
determined Spectra of the operator A2P on

We begin by giving the definitions of some
sequence spaces, which are needed in this
work.

[172]
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Definition 1.1: The space bv, of all

sequences of bounded variation is defined

by

bvy = {x = (x})}=0 € W, xi € C,such that klim X =0, Ypeolxksr — xx| < <}

with the norm

||9C||bv0 = Yk=olXk+1 — Xkl-

and the space bs of bounded series is defined by

bs = {x = (X)) p=o E W: xx €C, sup|Xi—oxk| < =},
neN

with norm

llxllps = sup|Xk—o x|
neN

bvy and bs are Banach spaces [10,15].

Definition 1.2: Let X be a complex
Banach space, the continuous dual X™* of a
sequence space X is defined as the set of all

bounnded linear functionals on the space X.
It is well-known that bvy=bs [15].

Some basic concepts are required for
our research and they will be given as

follows.

Let X be a complex infinite
dimensional Banach space and B(X) be the
set of all bounded linear operators on X
into itself. If T € B(X), we use R(T) to
denote the range of T. with T we associate

the operator T — Al.

The points A in C are divided into two

sets:

The resolvent set: p(T,X) ={1€C:T —

Al is a bijection},
and C\p(T, X),

The  spectrum: (T, X)={1€C:T -

Al is not invertible},

o(T, X) can be analyzed into three disjoint

sets as follows:

The point spectrum: 0, (T, X) = {4 € C:T — Al is not injective}, Al is not injective}
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The continuous spectrum:

0.(T,X) = {1 € C:T — Al isinjective and R(T — Al) = X,but R(T — Al) # X},

The residual spectrum: ¢,.(T,X) = {4 € C: T — Al is injective, but R(T — AI) # X}.

o(T,X) = 0,(T,X) Uo.(T,X) U o,(T,X).

(see, Stone [11] or [9,10]).

A linear operator T with domain and
range in a normed space X, is calssified I, I1
or III, according as its range, R(T). To
understand that, see[12,13].

Three subdivisions of the

spectrum can be defined:

more

Definition 1.3: In what follows,

0ap(T, X)
= {4€C: there exists a Weyl sequence for T
— Al}

is called the approximate point spectrum
of T. (a sequence (xk) in X is a Weyl
sequence for T if ||x, || = 1 and [|Tx|| = 0
,as k = oo, T € B(X)).

05(T,X) ={A€C:RAI —T) = X} is

called defect spectrum of T.
And
0:0(T,X) ={A€C:RQI =T) # X},
is often called compression spectrum.

o.p(T,X) and o5(T,X) are not
necessarily disjoint. As well as o,,(T, X) and

o.,(T,X) are not necessarily disjoint.

Where

[174]

(T, X) = 64p(T,X) U 05(T, X),
(T, X) = 03y(T, X) U 00 (T, X),
000 (T, X) < a5(T, X),
6,(T, X) € 0,y(T, X),

o(T,X) = 0,(T,X) U 0.(T,X) U 0,(T, X)
we note that

0 (T, X) = 0.,(T, X) \ O-p(T:X):

0,(T,X) =o(T,X)
\ [0,(T, X) U 0.0 (T, X)),
0ap (T, X) = o(T, X) \III,(T, X),
os(T,X) = o(T,X)\J3(T, X). (1.1)
From Proposition in [1], we have
o(T*, X*) =a(T,X) 1.2)
o, (T*, X") = 0,0(T, X) (1.3)

The following lemma will be used in the

sequel.
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If
operator on a Banach space X into itself,
then

Lemma 1.1. T is a bounded linear

0, (T, X) = 0,(T*, X*)\0, (T, X)

A€ 0,(T*, X*)\0,(T,X)), the operator
T — Al is one to one and hence has an
inverse. But T* — Al is not one to one.
Then, the range of the operator T — Al is

not densein X.So 1 € ¢, (T, X).

2. Related work

The spectra of A,, space bv, has been
considered by El-Shabrawy and Abu-Janah
in [4]. Here, we add some new results
related with this work in [4].

To avoid repetition, we will state the
following theorems which were proved in

[4] without any details about the proofs.

Fo={1€C:|A—al > |bl; 511\1]p Zg;olzg:o(dnk - dn—l,k)l = oo},

K, = {aj:j €N |a;—a| = |bl; Xy,

The following theorem includes results
0 (Aap, bvo), Op (Agp bvy)

op(Bap” , bvg").

about and

Theorem 2.1.

O—(Aab ,bvo)ZEUEUFo,
0y (Dgp ,bVvy) EE UK,
O—p(AZb ,bvo*) =DUEU Ho,

(i)

(ii)

(iii)
Where

E ={ay:k € N,|ay — a| > |b|}, (2.1)

D={1€C:|1—al <|bl}, (2.2)
D={1€C:|A—al <|bl}, (2.3)
(2.4)
br k-1 __ bi
aj—Ag+1 1| =Mjaj-ai, < } (2.5)

M; is any fixed natural number such that a; — a, # 0 for all k > M;, j € N with a; # a and

(ar) is

a sequence of nonzero real numbers which converges to a.

(A-a9)(A-a4)..(A—ax)

Go = {1 € C: 12~ al > |bl, sup [T,
N

boby-by

(A-a9)(A-a4)...(A—ak)

| = oo} (2.6)

Ho = {1 € C:|2 - a| = |bl,sup [T},
n

bob1--by

| < o0}, (2.7)

If |aj — a| # |b|, forall j € N. so, Ko = @. Then, we have the following results.

[175]
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Theorem 2.2. The following statements hold:

(i) O-T(Aab ) bvo) =DU Ho,

(i) o.(Dap ,bvp) = [{A € C:[A —al = |b[}\Ho] U Fo.

Theorem 2.3. The following statements hold:

() L(Aw ,bv) = lI3(Ag ,bvy) = 0,

(i) HI3(Agp ,bvo) = E,

(iii) 111,(Agp ,bvo) U 111,(Agy ,bvy) = D U Hy,

(iv) I,(Agp ,bvy) = 0, by the closed graph theorem.
(V) 11,(Agp ,bvy) = [{4 € C:|A — a| = |b|}\H,] U F,
(Vi) Uap(Aab 'bvo) = (5 \ HIl(Aab :bvo)) UE U F,

(Vi) 0.0(Agp ,bvg) =D UE U H,,
(viii) 05(Agp ,bvo) =D UE UF,,

where E, F,, K, and H are given as in (2.1), (2.4), (2.5) and (2.7), respectively.

3. Main Results

Our work is an extension for the work in
[4].

The generalized difference operator A%’
is defined on the Banach sequence space U as

follows

Aab X = (ak Xk + bk Xk+1 )]?:0; X = (xk)lo(o=0 €
o,

where (ay) and (by) are given sequences,

which are assumed to satisfy certain conditions

This operator can be represented by certain

infinite upper triangular double-band matrix, as

[176]

Aab:
a, b, 0 O
0 a, by O
0 0 a, b, --| (3.1)
0

0 0 a3

Let (ay) and (by) be two convergent sequences
of nonzero real numbers and these sequences

are such that

Jim a =
k—oo

So, under the assumption that the sequences
(ax) and (by) are bounded sequences of

nonzero real numbers.

We consider the operator A%:bs — bs,
which is defined by Eq. (3.1), for u = bs.
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The operator A which was represented by
the matrix in (3.1) on bs is linear and bounded.

It is easy to prove that.

The main aim of this paper to study the
spectrum and fine spectrum of the generalized
difference operator A% on the sequence
space bs by using new techniques without

many details about the proofs.

The work [4]

double-band matrices A,, on the sequence

related to lower triangular
space bv,, the inverse of the matrix was
calculated and used to determine the fine
spectrum. Here we use a different simple
method which helps us to determine the fine
spectrum of A* on the sequence space bs
without calculating the inverse of the double-
band matrix by using the results in Theorems
(2.1) and (2.2).

Theorem 3.2.

If T: bs — bs is a bounded linear operator with
the matrix A, then the adjoint operator
T*:bs* — bs™ is determined by the transpose

At of the matrix 4, where bs* = bv,,.
Theorem 3.1.
G(A%, bs) = {A€ C:|1—a| < |b[}UE U Fo.

where E and F, are given as in (2.1) and (2.4),

respectively.

Proof. Since bs™ = bv,. Then

a(A%,bs) = o(A%*, bs*), by (1.2)
=G(Aab,bvo) = EUE UF() = {/‘{E C: |A—
al| < |b|JUE UF,.

Remark 3.1. Indeed, o(A% ,bs) S DU

E U Gy, where E, D and G, is given as in (2.1),
(2.3), (2.6).

(i) 0, (A%, bs) ={A € C: |1 —a| < |b]}UE U H,,

(ii)o, (A", bs*) € E U K,,

where E, Fy, Ko and Hy are given as in (2.1),(2.4),(2.5) and (2.7), respectively.

Proof. 0,(A, bs) = 0,(A%y, ,bvy) =DUEUHy ={2€C:|[1—a| <|b[}UE U H,.

0, (A%, bs*) = 0,(Agp ,bVy) S E UK,.

If |aj - a| # |b], for all j € N. So, Ky = @. Then, 6,(Agp , bvy) = E. So, we obtain:

Theorem 3.3. o, (A%, bs) = 0.

The proof follows from Theorem (3.2) and then applying Lemma 1.1.

0, (A, bs) = 0,(A*, bs*)\o, (A, bs) = @.

[177]
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Theorem 3.4.
0.(A® bs) = [{L € C: |1 —a| = |b|}\Ho] U Fo,
where Fy, Hy and are given as in (2.4) and (2.7), respectively.
Proof.
0.(A%?,bs) = g (A, bs)\[a, (A%, bs) U 6, (A, bs)]
= [{A € C: |2 —a| = |b|}\Ho] U F,.
Since,
0, (A%, bs) = I3(AP, bs) U 113(AP, bs) U IT13(A%, bs),
0,(A%,bs) = 111,(A%?, bs) U I11,(A%, bs),
0.(A, bs) = 11,(A, bs),
0ap (A%, bs) = a (A, bs)\II1,(A%, bs), by relation (1.1)
o5(A%, bs) = a(A*, bs)\I5(A, bs), by relation (1.1)
00 (A%, bs) = a,(AP*, bs*). by relation (1.3)
Thus, we have this theorem.
Theorem 3.5. If |aj — a| # |b|, forall j € N. So, K, = @. Then.

(i) I3(A®,bs) U II3(A%, bs) = 0,(A™, bs) \o,(A™*, bs*)
={1€C:|1—a| < |b|}UH,,

(i) 1115(A%, bs) = E,

(iii) 111, (A%, bs) U I11,( A, bs) = @,

(iV)I1;(A%, bs) = [{A € C:|A — a| = |b|}\Ho] U F,,

(V) 04p(A%,bs) ={1€C:|[A—a| < |D]}JUE UF,,

(Vi)as (A%, bs) = {A € C: |2 —a| < |b|}UE U Fo\I3(A%, bs),

(Vi)  0,,(A%?,bs) =E.

where E,Fy and Hg are given asin (2.1),(2.4) and (2.7), respectively.

[178]
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Conclusion

Many results were obtained with respect to
the fine spectrum of upper triangular double-
band matrices as operators on certain
sequence spaces. But, no contribution has
appeared so far to study the problem in the

sequence space bs. In this paper, we fill this
gap.
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