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Generalized Systems of Impulsive Differential Equations

Abdalftah Elbori, Ramadan Mohamed Naas Al-wahishi? & Ola Mohammed?®
1. Department of Mathematics/ Faculty of Science, Azzaytuna University, Tarhuna-Libya
abdalftah81@yahoo.com
2. Department of Mathematics / Faculty of Education, Azzaytuna University, Tarhuna-Libya
3. Department of Mathematics / Faculty of Education, Omar Al-Mokhtar University, Albaida -Libya

Abstract:

With regard to Impulsive differential equations (IDE) and their applications, this paper shows
Gronwall Inequality Bellman Lemma for Impulsive differential equations. Another point is
shown here in this paper is necessary condition for periodic solution of (IDE). This paper also
solves and extends linear homogenous impulsive differential systems with their stability
respectively.

Keywords: Gronwall Inequality Bellman Lemma, Periodic systems, Linear system of Impulsive DE,
Stability.
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1. Introduction as natural description of observed evolution

phenomena of several real-world problems.
The necessity to study impulsive differential

equations (IDE) is due to the fact that these
equations are useful mathematical tools in

Such as: for blood, muscle, tissue, etc. and
finally is eliminated from the system by the

modelling of many real processes and kidneys see for more details ([1-5]. It is

phenomena studied in optimal control, easily to release that, there are many good

mechanics, biology, electronic, economics, monographs on the impulsive differential
medicine, etc. equations [6-9].

Many evolution processes are characterized Nevertheless, there is a different situation
by the fact that at certain moments of time in many physical phenomena that have a
they experience a change of the state rapid change in their situations for example
abruptly. mechanical systems with impact, biological

systems heart beats for instance, blood

The differential equations that are involving flows population  dynamics  [10-14]

impulse effects is called IDE, which appear theoretical physics, radio physics,

[119]
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pharmacokinetics, mathematical economy,
chemical technology, electric technology,
metallurgy, ecology, industrial robotics,
biotechnology processes, chemistry [15],
engineering [16], control theory [17,18] and
so on. The first paper in this theory is
related to [19]. Although this theory has
undergone several developments, it is
considered slow due to the special features
of impulsive differential equations (pulse
phenomena for instance).

In many previous works, first and second
order ordinary differential equations were
treated with impulses (see [1, 8, 11, 15-
23]). An IDE is described by three
components:

1. a continuous-time differential
equation, which governs the state of
the system between impulses;

2. animpulse equation, which models an
impulsive jump defined by a jump
function at the instant an impulse
occurs;

3. and a jump criterion, which defines a
set of jump events in which the

impulse equation is active.

The paper is organized as follows: The
system of IDE has been discussed in the
next section. The proof both Gronwall-
Bellman Lemma for DE and IDE are shown
in Section 3. In Section 4, the continuous
dependences and periodic systems are
discussed. Section 5 is devoted to Linear
and stability of IDE. In Section 6, conclusions

are drawn.
2. The idea of IDE Description
Let us consider the following system
x'=f(tx),t+ Hi}
; V(t,x) ER 2.1
Mxlecg, = 1) s 1)

Here Ax|;—p, denotes the jump at ¢ = 6; and we have Ax|,—g, = x(0;") — x(6;), where
x(0;) = lim x(t) & x(6;) = lim x(t)
t—0; t—0;

Remark 2.1:

We assume that the solutions of x' = f(¢t,x) exists on the intervals (6;,6;,4] that is, the

solution can be continued to the jump points
Example 2.1:

If X' =0, t#i&Ax|o; = —x+—, t € (01),xp=a anda # 0.

To solve for t € [t,, 1], we have x' = 0 & x(t,) = a, then, we obtain x(t) = a, and we need

x(17%), By using impulse condition

Ax|e=g = —x(1) + L =x(1") —x(17) > x(1*) = 1

x(1)

_1
x() a
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For t € (1,2], we have x' =0& x(1*) = % then, we obtain x(t) = % and we need x(2%),
by using impulse condition
1 1
Ax|i=p = —x(2) + O x(2Y) —x(27) =2 x(2%) = O
For t € (2,3], we have x’' = 0 & x(2*) = a, then, we obtain x(t) = a and so on for t > t,,

the solution is shown in the Figure 1.
x(t)

Figure 1: The numerical solution of IDE for t > t,.

What about x(t) for t < t,?
For t € (0,ty], we have x' = 0 & x(t,) = a, then, we obtain, x(t) = a, and we need x(07), we

need to move backward
1 1

1 + - — —
Ax|i—o = —x(0) +m= x(07) —x(07) = x(0) =309 " a

This is for t € (—1,0], we have x' =0& x(—1%) = % then, we obtain x(t) = % and we

need x(—1). By using impulse condition

Ax|je_q = —x(—1) + x(il) =x(—-1") —x(-17) =
1

x(—1%) -

x(—1) = a

Thisis for t € (2,3], we have x' = 0& x(—1) = a, and then, we obtain x(t) = a and so on for

t <ty

1
. - if2n—-1<t<?2 . .
General solution x(t, ty, a) = {a if 2n n} the general solution is shown in the

aifzn<t<2n+1
figure 2:

Figure 2: The general numerical solution of IDE for.

What about x(t, t,, 0), for t € [t,, 1],

[121]
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x'=0 o _
x(ty) = 0} = solution is x(t) = 0.
We need x(1%)?

1 _ 1
Ax|i=; = —x(1) + i x(11) —x(1™H = x(1%)= o

Since x(1)=0, x(1%) is not defined, that is, the solution x(t,t,,0) is not defined for t > 1 in
fact, it is defined only on (0, t,],
What about the stability of the solution x(t, ty, a)?, it is important to recall:
x' = f(t, x)
x(to) = Xo
The solution x(t, ty, x,) is stable if Ve > 0, 36 > 0 such that, forall t > t,
lxo —x1] < 8 = |x(t, t, x0) — x(t, ty, x1)| <& Vt=ty [11] and [15].
Let us go back to our solution of the impulsive differential equations in Example 1.

x(t, bty @) = {%, if2n—1<t<2n
a if2n<t<2n+1
To discuss the stability of x(t, ty, a) is needed to consider the following cases:
Case 1: whena > 0
la —b| <& = |x(t ty,a) —x(t, ty,b)| <e Vt=t,
To check this condition, exit or not if and only if
t € (2n,2n+ 1] = |x(t, ty,a) — x(t, ty, b)|=|a — b|

} = solution is x(t, ty, x¢)

Where, if

t € (2n —1,2n] = |x(t, to, a) — x(t, to, b)|= E — %|
Assume that:
§ <= (sothath > 0)then b € (a 3“)

2’ 2

6 o 6 26
|x(tﬁtOFa) _x(t;tO;b)l S |E| :% < a_%zﬁs E.

2 2
The last number is < ¢ if § < % in conclusion given £>0 if we choose §=min{e, % %} then

la — b| < & implies |x(t, ty,a) —x(t, ty,b)| <e Vt=t, That is if a>0 then the solution
x(t, ty, @) in this case is stable
Case 2: - when if a < 0, we know the definition of the stability so, if t € (2n,2n + 1], then
VE > 0,30 > 0 such that
la —b| < 0= |x(t, ty,a) — x(t, ty,b)| < E

Whereas if t € (2n — 1,2n], then

la—b| <0 = |x(t,ty, a) — x(t, to, b)| = |1—1| _IZ@-bl _la=bl_o

- o o a b lab] ~— ab T ab
la—b|<o=-0<a-b<o=-d+a<b<o+a.

Let us assume that o < — =, and b < 0, hence b € [%a,%]. Then, we get

[122]
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l @bl labl o

1
» LO» - 4 ’b P - -
|x(t to a) x(t tO )l ’a b |ab| ab ab a% az

2¢ . . . 2g
So, o < == In conclusion for all € > 0 if we choose o = min { £, —>,=—=}, then |a — b| <

o implies |x(t,ty, a) — x(t, ty, b)| < € forall t > t, that is if < 0 then the solution x(t, ty, a) is
stable and the figure below shows our solution is periodic function.

Figure 3: The solution of IDE if a < 0.

Case3: - if a = 0, then our solution for impulse exists only between (0,1), but in general case the
solution is not defined. Let us go back to our equation it has zero solution when a = 0, for the
stability in this case, it is not stable, it is bifurcation solution when a=0. because there is no any
equilibrium point at 0.

Definition 2.1:[8]

Suppose that I € R and {6;} c I. A function ¢ is said to be in piecewise continuous on the
interval () (PC(1)) if ¢ is left continuous on I and ¢ has jump discontinuity at t = 6; for all
i=12,..

Lemma 2.1: if ¢’ € PC(I) then
t

0O = p(t) + [ ¢/)ds+ Y B 90

to to<0;<t
Note that for continuous A ¢(8;) must ¢ (8;") —@(8;7) =0
Proof:
Let
rO= ) 5@
to<0;<t
and

t

h(t) = @(ty) + fq)'(s)ds + 1 (t).

to
Note that for t € [t,, 8,], we have T(t)=0, for t € (6,,6,], We have (t)= Ap(6;)
fort € (6,, 03], We have (t)=Ap(0,) + Ap(6,), for t, < 6; < t as shown in the Figure 4.

[123]
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x(t)
Ap(81) +Ap(02) +8@(03) |- g
800 + Ap(8;) [+ —

L —e !

Figure 4: The steps when t, < 6; < t.

This means that if t # 6;, then 7'(t) = 0 and hence if t # 6;, we have
t

d
WO =306+ [ 0'©ds + 70| = 9'®)

to
Moreover,
6; 60
AR(8) = BR(OT) = AR(OD) = p(to) + [ 9" ds + @) ~ |0(e) + [ ¢ (s)ds +7(0)
to tO
=@ -7 = Y Ae@I— D A6 =200
tosOr<6;} to<Ok<0;
k=1,2,3,...,0 k=1,2,3,..,i—1
That is
h'(t) = ¢'(t),t # 0,
Ah(6;) = Ap(i) and h(ty) = @(ty).
And hence

h(t) = ¢(t)
More precisely if, ¢(t) € PC'(I), then
t

0©) =0t + [ s+ Y 89O
tO t059i<t
3. Ronwall-Bellman Lemma for DE.

Lemma 3.1:[9]

Let C> 0, v be positive continuous function, u € C'(I) and positive such that
t
u(t) <C+ fu(s)v(s)ds forallt > t,
to
Then

t

u(t) <C+ eJto V(s

[124]
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Lemma 3.2: (Gronwall-Bellman Lemma for IDE)

Let C=0,B; = 0and v € PC'(I), v > 0 continuous function and u € PC'(I)is positive and
satisfies

t
u(t) <C+ f w(s)v(s)ds + Z Bu(6;) (3.1)
to to<0;<t
forallt > ¢,
Then
t
u(t) < celeo V(S)ds 1_[ (1+5) (3.2)
t059i<t
Proof:

We will use induction on the interval (6;, 6;,], then when t € [t,, 6;], hence the inequality (3.1)
becomes

t

u(t) <C+ j-u(s)v(s)ds (3.3)

to

By using G.B Lemma, we have

t
u(t) < Cel’ % v e[ty 6] (3.4)

Which means that (3.2) satisfies for t € [ty, 8,] by (3.4). Let t € (6,,80,], then the inequality
(2.1) becomes
t

u(t) <C+ ju(s)v(s)ds + B u(6,) (3.5)

to
01 t

=C+ J u(s)v(s)ds + Ju(s)v(s)ds + Byu(6,)

to 91
By using the Equation (3.4)
01 t
fel v(s)ds
<C+ f u(s)v(s)ds + fu(s)v(s)ds + B,Ce’to

By using G.B Lemma 3.2, we have

[125]
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t t
61 61 01
< Cefto v(syds J.u(s)v(s)ds + B1Ceff0 vis)ds _ c(1+ Bl)ejto v(s)ds fu(s)v(s)ds
91 91

By using G.B Lemma, we have
0 t
u(®) <Cc(1+ Bl)eftolv(s)dsefglv(S)ds -

t
w(t) < C(1+By) 0" vt e (6,,6,] (3.6)

Which means that (2.2) satisfies for t € (6,,60,] by (3.6). Let t € (6,,65], then the inequality
(1) becomes as (3.7)

t

u(t) <C+ fu(s)v(s)ds + Byu(6,) + B,u(06,) (3.7)
to
0, t
=C+ f u(s)v(s)ds + B;u(6,) + j u(s)v(s)ds + B,u(6,)
to 6,

By using the Equation (3.6)

t
) 6,
u(t) < C(1+ By)elo "O% 4 ]u(s)v(s)ds + B,C(1 + B,) elo V4
02

02
= C(1+B)(1+ Bpelo "%+ [7 u(s)v(s)ds
By using G.B Lemma 3.2, we have
6 t
U(t) < C(l + Bl)(l + Bz)eftOZV(S)dSefgz v(s)ds —

t
w(t) < C(1+ B)(1 + By)eln"@% vt e (6,,6,] (3.8)

The inequality (3.8) implies (3.2), Assume that the inequality (3.1) is true for t € (6y, 65411
That means

t

u(t) < C+ Byu(6,) + Bou(0,) + -+ + Bru(6y) + fu(s)v(s)ds (3.9)
to
implies
t
u(@) < o™ [T @a+p) (3.10)
t059i<t
i=1,2,...k

[126]
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Now, we need to prove that the inequality (3.1) satisfies (3.2) when t € (041, 6x+2]. Then the
inequality (3.1) becomes
t

u(t) < C + Byu(6,) + B,u(8,) + -+ + Bpu(6y) + Bry1u(Op41) + Ju(s)v(s)ds (3.11)

to
Ok+1
= C + Byu(6;1) + Bu(6;) + -« + Bu(6y) + f u(s)v(s)ds + By41u(Ox+1)
to

t

+ f u(s)v(s)ds

Ok+1

By using the Equation (3.10), then (3.11) becomes

t

Ok+1 Ok+1
u@ < celo ™ T @ +p+ Beacedo™ O [T aspy+ [ uewds
to=0;<t tosb;<t Ok+1
i=1,2,...k i=1,2,...k

t

1+p)+ f u(s)v(s)ds

0
fto"“ v(s)ds

=ce
t059i<t 9k+1
i=1,2,...k+1
By using G.B Lemma 3.2, we have
6 t
u(t) < Ceft0k+1 v(s)dsef9k+1 v(s)ds (1+8) =
tosOi<t
i=1,2,...k+1
ft v(s)ds
u(t) < Celo 1_[ (1 +B)VEE (Bprr, Oss]l  (3.12)
tosO;<t
i=1,2,...,k+1

The inequality (3.12) implies (3.2). Then the inequality (3.1) implies (3.2) for all vt e
(Bi41,0:44]

Corollary 3.1: If u € PC(I) is a nonnegative function and C, ¢, L are nonnegative constants such
that

u(®) < C+ J [¢ + Lu(s)]ds + Z [ +1u@®)] )

tO t056i<t
Then,
( L(t—tg) i(to,t) (
u(t) < C+Z ettt (1 4 L)Hte ~7 (**)
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Where i(t, ty) is the number of 6; in (¢, t,)
Proof:

Let () = ¢ + Lu(t) = u(t) = L2~

L
t

u(t) <C+ | p(s)ds + p(0) =
t{ toszei:«
(+Lu(t) =) <{+L|C+ f(p(s)ds + 2 p(6;)

tO t0591<t
t

=(+LC+ fL(p(s)ds + Z Lo(6,)

tO t059i<t

By using G.B Lemma 3.2 for IDE, we will have

t .
o(t) < ({ + LC)elo ™™ (1+1L) = (LC + ettt (1 4 L)iltoD)
to<k<t
k=1,2,..1i
Since u(t) = (p(tL)_z, then
) =¢

< (g + C)etEt)(1 + L)t — % = u(t)

< (c + %) el(t=to)(1 4 [)iot) — %

L

Where i(t, t,) is the number of 6; in (¢, t,)
4. Continuous DEPENDENCES AND Periodic Systems

Definition 4.1[15]: Consider
x'=f(t,x),t+# ei}

Mxlomg, = 1,(0) (+1)

Where 6; — o as i — oo, the solution x(t, ty, X() is said to be continuously depending on
the initial value, on the interval [ty,t, + T] if for all € > 0 there exists § > 0 such that,
|xo — x1| < & implies|x(t, to, xo) — x(t, to, x1)| < &, V[to, to + T].

Definition 4.2 [15]: Consider (4.1) and
y' =fty)+g(ty)t+6; }

Ayli=p, = () + Wi (y) (4.2)

The solution x(t, ty, xg)of (4.1) is said to be continuously depending on the right side on the
interval [ty,t, + T] if for all € > 0 there exists § > 0 such that |g(t,y)| <6, |W;(y)| <&
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implies |x(t,tg,x0) — y(t, to, xo)| < & Vt € [ty, ty + T] where y(t, ty, x,) is the solution of
(6) satisfies y(ty) = xo.

Theorem (4.1):
If|f(t,x) —gt,y)|+1L;(x) —L(y)| <Llx—y|foralli=1,2,..P,L > 0, then the solution

of the equation (4.1) continuously depends on the initial value and on the right side on
interval [ty, t, + T

Proof
Let £>0 be given chosen § > O suchthat0 < § < ge !T(1 + L)~ F

Now

to<O;<t

t
%o =50+ [ 5 x0(Dds + D GO0

t
(@ =x+ [ fmEds+ Y @)
tO t0S9i<t
If |xg —x1| < 6, we have

| (t) — x1(2)]

< |xo — x4
t

+ 17606 = FG mDlds + Y [1(x()) = 1i(x @)
to

tosOi<t
t

<o+ [ L@ -a@lds+ Y L) -x @)

to t056i<t
By using G.B lemma 3.2 for IDE, we have
| (1) — x1 ()] < Selt=t)(1 4+ L)tod) < §elT(14+ L) < ¢

Therefore, the solution x,(t) continuously depends on x,. To prove the continuous
dependence on the right side. Let x(t) = x(t, ty,xy) be solution of (5) and y(t) =
y(t, ty, xo) be solution of (4.2). Let €>0 be given chosen § >0 such that 0<é§ <
Le[e!T(1 + L)P —1]71, now

KO =x0+ [ FG5x6Dds+ D hExO)

to<0;<t
t

y© =x0+ [[FG.3(9) + g6 yeNds+ Y (H(0)) + WG]

to to<hi<t

If |g(t,y)| <6, |W;(y)| < 6, then, we have
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t

|x(t) —y(®) < f[LIx(s) —y(s)| + blds + 2 [L1x(6;) — y(6:)] + 6]

tO t0591<t
By using the corollary (3.1) of the G.B lemma for IDE given in (3.4), we get
o
@ —y@Ol < 7"+ 1" -1] <e
Remark 4.1.

If g(t,y) = 0,W;(y)=0, then in the above proof we get
t

O - y©1 < [[LIxE) = y@lds + Y [Lx(@) = y@)I

tO t0S9i<t

Which is the GB for IDE with C = 0, therefore, we obtain

|x(®) = y(®)] < 0orx(t) = y(t)

which also prove the unquiesces
4.2: Periodic Systems

Consider the IDE

x'=f(tx),t+ Hl-}
Ax|i=g, = L;(x)

(4.3)
This system is said to be periodic if

P1) 3w € R* such that f(t + w,x) = f(t,x) V (t,x) € R X R"

P2) 3P € Z* such that I;,p(x) = [;(x) Vx € R"

P3)0;.p =0; +wforalli € Z

In this case, we say that the system is called (w, P) — Periodic

Example 4.1.

The system

x" =x3sin’t, t # 6;& Ax|¢=p, = (—1)'x, where §; = % i € Z is (m, 2) periodic since
P1)f(t + m, x) = x3sin?(t + m) = x3 (—sint)? =x3sin’t = f(t,x) V (t,x) €ER X R"
P2) I;1o(x) = (=1)*2x = (—=1D)"x = [;(x) P = 2,4,6, ...

(i+2)T+1 _ im+1

P3) 6;4, = > +n=0;+nforallieZ

Lemma4.1.

If x(t) is a solution of equation (4.3), then x(t + w) is also a solution
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Proof

Suppose that: x(t) is a solution of (4.3), let ¢(t) = x(t + w) we need to show that ¢ (t)is also
solution of (4.3)

M) =x't+w) =ft+wx(t+w)=ft+we())
By P1
@'(t) = f(t, o(©)
Then,p(t) implies the DE, moreover
Apli=g, = 9(6]) — 9(67) = x(6; + w*) — x(6; + ®) by P3

= x(0;4p+) — x(0i1p) = li1p(x(0i1p)) by P2

= I;(x(6i4p)) by P3

= I;(x(6; + 0)) = L;(9(6))
Show that ¢ (t) satisfies the impulse condition as well, therefore ¢ (t) is also a solution of (4.3).
Example 4.2.

x' = 5x + sint, x(0) = x,
1

Xe = Ce®, x, = ASint + BCost, A= ——,B = ——
26 26

General solution

5 1
x(t) = Ce®t — %Sint ~5¢ Cost

1

therefore

(t) = +1 5t 55't 1Ct
x(t) = (x 26)e 2g it ——-Cos

Theorem: Poincare Criteria (4.2) [15]:
Suppose that (4.3) has a unique solution for any initial condition. Then x(t) is a w —periodic
solution of (4.3) iff x(0) = x(w)

Proof
=If x(t) is a w —periodic solution then

x(t + w) = x(¢t) for all t in particular t = 0, we have

[131]



Rawafed Al-Marefa Journal (Vol. 9, 2024) Abdala Mohamed A. Ashhima

x(0) = x(w)

& Suppose that x(0) = x(w) = x4, let x(t) = x(¢,0,x,) be solution of (4.3). Then by the
lemma we know that ¢(t) = x(t + w) is also a solution of (7) ¢(0) = x(w) = x(0) = x, by
the uniqueness, we have @(t) = x(t) for all ¢, that is x(t + w) = x(t) for all ¢, this means that
x(t) is a periodic solution.

Example 4.3. If
x'=2x, t#0,&
Ax|c_g, = 3 Where f; =i+~
Is there 1-periodic solution?
Solution

Note that, here w and P can be any positive integer. To have 1-Periodic solution by the Pervious

Theorem. We need x(0) = x(1). Let x(0) = x, on [0,%], we have x(t) = xoe?tand hence,
+ 1

X G) = xpe , Now x G ) =3+ xye, 0N (%,%]. We have x(t) = (3 + xoe)ez(t_E), Thus x(1) =

(3 + xpe)e. Therefore x(0) = x(1) iff x, = (3 + xge)e.

Hence,

3e

Xy = ———
071 —e?

that is the solution x(t, ty, xo) is 1- Periodic solution
5. Linear homogeneous systems.
Homogenous system, if we consider the IDE

x'=A)x,t #6;, x € IR”} (5.1)

Ax|i—p, = B;ix(6;)

Where {6;} c Rand 6; < 6;,, Vi€ Z, A(t) is continuous and bounded (n,n) Matrix function
on (a, b), B;is constant matrix for each i € Z

Theorem 5.1 [1]:

YV xo € IR™, there is a unique solution x(t) = x(t,ty,x,) define for all t >t,, moreover
det (I + B;) # 0 for all i € Z, then this solution can be continued to —oo.

Proof

Suppose that 0; < t, < 6;,, for some i € Z, then on [ty, 0;41], x(t) = x(t, ty, x) €xists as
solution of the IVP

x'=A(t)x, x(ty) = x,
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Then by the impulse condition, we have
X(Q;H) —x(0;41) = Bix(6;41) = x(gi-:—l) = (I + B;) x(0;41)

By induction x(t) exists and unique on [t,, ). To proceed to —oo on interval (6;,t,] x(t) is the
solution of

x' = A(t)x

x(to) = Xo
Now the problem is to find x(8;) since

x(6;) = (I + B)x(6;)
As
x(8) = (I + B)~'x(6;")

By similar arguments, we have the unigque solution defined on R.
Theorem 5.2 [1]:
The solution of linear homogeneous systems (5.1) from an n-dimensional linear vector space
Proof
Let ¢, (t) and ¢, (t) be two solutions of (5.1), then for any C;, C, € R, we have, when t # 0;

(C101 () + Co02(1)) = Crp"1 (1) + Co0",(t) = CLA(D) @1 (1) + CA() @2 (t)
= A(t)(Crp1(t) + Cr,(1))
Which means that C;¢4(t) + C,,(t) is also solution of differential part at t + 6;
Now for t = 6;
A(C1p4(8) + Cz‘Pz(t))h:o,- = [(€191(0}) + C29,(67)) — (C101(8;) + C29,(6)))]
= C1(@1(6}) — 91(0) + C2(92(07) — 92(8;)) = C1B;91(8)) + C2B;p2(6;)
= B;(C191(08;) + C29,(8,))

Which means that C;¢4(t) + C, ¢, (t) satisfies the impulse part, therefore, the set of the
solution is a vector space, we need to show that this space is n-dimensional. Let
{eq, e, ..., e,} be standard basis for R™,

let @;(t) = x(t,tg, €;), ] = 1,2,...,n be the solution of (5.1) satisfying ¢;(t,) = ej, we will
show that {@4(t), @2 (1), ..., @, (t)} is a basis for the solution space of (5.1). Span. Let x(t) =
x(t, ty, xo) be any solution of (5.1) with x(ty) = x, clearly, there exist €4, C,, ..., C,, such
that

Xo = C1e1 + Czez + - Cnen
Let
@(t) = C1p1(t) + C22(8) + -+ + Crpy ()
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Clearly, ¢ (t) is a solution of (5.1) and
@(tg) = C191(tp) + C22(tg) + -+ + Crp,(ty) = C1re1 + C2e5 + - Cpe, = xo = x(&p)
Means that

@(t) = x(t) Vt € IR because of the uniqueness that is x(t) is a linear combination of

@1(t), P2(0), ..., @, (t) since x(t) is an arbitrary solution {¢(t), @, (t), ..., ,(t)} spans the
solution set

Independence. Assume that
C191(t) + C202(D) + -+ Cp,(t) =0 VEER
For some constants €4, C5, ..., C,, € IR. For t = t, we get

C191(tp) + C202(tp) + -+ Crpyp(ty) =0 = C1ey + C2e; + - Che, =0= €, =C, =
C3==Cp=0

Thus {@1(t), 2(t), ..., ,(t)} is linear independent. In this case, we can find another set of
solution

{x1(t), x5(t), ..., x, ()} which is a basis. Hence the matrix
X(t) = {x1(t), x2(0), ..., xn (1)}

Is called a fundamental matrix, notice that X(t) is a matrix solution of linear homogenous
system and det(X(t)) #0VteER

Lett # 0;, x € R" and consider IDE
x'=Ax,t # 6;
Ax|t=0i = Bx }
Where AB = BA and let det (I + B) + 0. Let x(ty) = xgand say t, € (0;_1,0;) for some
i €EZ
to t
i1 6; 61 Or Okt

On [0, 8;], we have x(t) as solution of x' = Ax, x(ty) = x¢
Which x(t) = e4(t-t)x, and x(0;) = eA@i~to)x,
x(07) = Bx(0;) + x(0;) = (I + B)x(8;) = (I + B)eA®i~to)x,
On (0;,0;:1],
x(t) = eAt=0Dx(97) = A0 (] + B)eAWi~to)x,,
Note that AB = BA implies that
(I + B)eA®i~to) = gAi~to)(] + B)
Therefore,
x(t) = eAt-00eAi~) ([ + B)xy = eAt~0)(I + B)x,
On (041, 0;42],
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x(t) = eAC-0LD (I + B)x(67,,) = eAt=950 (I + B)eA®ir1—t0) (] + B)x,

Therefore,
x(t) = eA-0) (] + B)?x,
For (6, Ox+1], _
x(t) = eAt-) (] + B)k-H1x,
In general
x(t) = eAt-to) (] 4+ B)itobx,
Where i(t, t) denote the number of ; on interval (&, t)

Example 5.2.
Lett # 0;, x € IR" and consider IDE
x'=Ax,t + 0;
Ml = B | 6.2
to t
;i1 6; 0641 O Ori1

x(t, tg, x9) €At (I + B)eAOk=0k-1)  ¢ABi+1-60 (] 4+ B)eABi~to)x,
If AB = BA then
x(t, ty, xo) = eAt=0) (] + B){to)x,
Where i(t,, t) denote the number of 6; on interval (2, t)
x(t) = e*tt)(1 + B)i oDy,
[s the solution of impulse system

x' =Ax,t + 0;
Ax|t=9i = Bx }

Verifying this claim
If we take any solution
x(t, ty, xo) = eAtto)x,
x' = Ax
x;(t) = ety

If ReA;(A) < 0 for all J, the solution is asymptotically stable
If ReA;(A) > 0 for some J, the solution is unstable
If ReA;(A) = 0 for all J, the solution is stable
Whereas for IDE, we note that

x(t, ty, xo) = eAt=t)(J + B)toDy,
Can be written as follows

x(t ty, xo) = eAlt-to)+ilto DI (I+B) 5
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— e[A+P ln(I+B)](t—t0)x0_

i(to,t)
(t—to)

Observation, letA = A+ P In(I + B) and 4; = 4;(4)

Where P =

i) If ReA; < O for all J, then the trivial solution of (5.2) is asymptotically stable
ii) If ReA; < 0 for all J, and 4; is simple, the solution is stable
iii) If there is an eigenvalue with positive real part then solution is unstable

Consider the IDE

x’=Ax,t¢9i,xER"}

5.3
Ax|;—g, = B;x(8;) (5.3)

Suppose that u(t, s) is the transition matrix of x' = A(t)x [ that u(t, s) is a matrix solution
and u(s,s) = I]. [ in this case x(t, tg, xo) = u(t, ty, xo)]
Then X(t, to, xO)?
x(t, tg, x0) = u(t, 0, )(I + Br)u(Oy, Ox—1)(I + By—1) ... w(0i42,0;11) (I + By 1)u(0;44,0,) (I
+ Bu(8;,to)xo
Fort € (0, 01.1),0n [tg, 0;] x(t) = u(t, ty)xy, Just think about x to prove that
x(t,tg) = u(t, 0, )+ By) ... u(0;41,0,)(I + Bu(;,to)xo
[s called the transition matrix of (5.3) for this problem.

to t

0,1 6, Oi-1 6 6y Ok

We can prove it by induction when t € [t,, 8;], then, x(t, to, xo) = €2t x,=U(t, to)x,
We know that
x(8;,to, xo) = e~ xy = U(0;, to)x,,

we want to find x(87, to, xo).

x(07,to, x0) = (I + B)x(8;,to, x9) = (I + B)eA®i~"x, = (I + B)U(0;,t9)xo
When t € (0;,0;,1], then, we have that

x' = Ax
And
x(07,tg, xo) = (I + B;)eA@i~tox,,

We get that,
x(t, to, xo) = eAt=00)X(0})= eAt=00) (I + B,)eACi=t)xy = U(t,0,)(I + B;)U(8;, to)x,.
We know that
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(041, to, xg) = eAC170D (I + B,)eACit0xy = U(0;,1,0,)( + B)U(8;, to)xo,
we want to find x(87, 4, to, Xo)-
x(8}11,t0, %0) = (I + By )x(8111, to, %0) = (I + Byyy)eA0i=00) (I + B))eACi—to)x,
= (I + Bi4+1)U(0i41,0,)(I + B))U(6;, t9)xo

Now, let us assume that the system is true when t € (8y_4, 0], and we want to prove it
whent € (Bk, 0k+1].

That means, we have from system

x(t, tyg, xg) = eA(t_e’t*)x(e:tq) =U(t,0x_1)I + By_1)U(Oy_1,604_2) .. u(0;41,0,)(I +
B)U(O;,ty)x,

We know that
x(8y, to, Xg) = eACx=0%-) x(8,, to, x,)
= A0k (I + B _)U(Oy_1, Or_2) .. U(B:41,0) (I + BYU(8;, to)x,
= U(O, 0y-1)(I + By-1)U(Ok-1,0y3) ... U(0:41,0,) (I + B)U(0;, to)xo
And we also can get

x(elt't();x()) = (I + Bk)x(akl tO;xO)
=+ B;)U(6y,04_1)UT + By_1)U(0y_1,04_3) ... U(0;41,0,)
+ B)U(0;, ty)x,.

Therefore, we have

and

x(05,tg, x9) = (I + B)U (O, 04_1)(I + By_1)U(O)_1,60y_2) .. U(0;11,0,)(1

+ Bi)U(ei’ tO)xO
when t € (6y, 0y41]. Then,
x(t, tg, xo) = eA0x(07)

=U(t,0,)I+ By)U(OBy, 0_1)I + By_1)u(Oy_1,0y_2) .. U(0;11,0,)(I +
B)U(6;,t9)x
Forallt > t,
We want to find d x(t, ty, xo) fort < t,.

It means that we have to proceed back the same steps in the previous case.

t to

0,1 6, 0.1 6 Oig Ok O

We can prove it by induction, when t € [0, ty], then
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x(t, ty, xo) = eAE 0 x = U(t, to)x,
We have that,
x(87,tg, x9) = A ), = U(8;, o).
Now, we need to find X(8;, ty, xo) by using impulse condition, we obtain
x(8;,t,x0) = (I + B) " 1x(87, to, xo) = (I + B) 1A ~t0)x, = (I + B;))"1U(8;, to)xo
We have that,
x' = Ax
x(8;,t, x0) = (I + B;)'U(6;, to)xo
Now when t € (8;_4, 8;], we have

x(t, tg, xo) = eA=00x(0;, tg, x9)=eA=9) (I + B))"1U(0;, tg)xo = U(t,0,)(I +
B;)"1U(6;,tp)x,

We have that, x(0;_,, to, xo) and by using impulse condition, we can get x(0;_, ty, Xo)
x(8i_1,t0,x0) = (I + Bi_1)"'x(8} 1, t0,x0) = (I + By_1) &A1= (1 + B)"1U(8,, ty)xo
= (I +B;_1)"'U(6;-1,0,)(I + B,)~'U(8;, ty)xo
We have that,
x' =Ax
x(60;_1,t0,x0) = (I + B;_1)"'U(8;_1,0,)(I + B,)~'U(8;, to)xo
Now when t € (8;_,,0;_1], we have

x(t, tg, xo) = eAt0-Ux(0,_4, 0, xo) =eA=%-0 (] + B;_1)7'U(0;_1,0)U +
B)"1U(6;,to)xo

=U(t,0;—1) I+ B;_1)"'U(6;_1,0)(I + B)"'U(8;,ty)x,
We have that, x(0;_,, to, xo) and by using impulse condition, we can get x(0;_5, to, Xo)

x(0;_3,t9,x9) = (I + B;_3) " 'x(67_,, to, x0)
+
= (I + B;_) 1e4®20-Dy(0,_4,0,)(1 + B;))"1U(0;,ty)x,
=U+B;_3)"'U(0;_2,0;_1)I+B;_1)"U(0;_1,0)UI + B;)"'U(0;, ty)x

Now, let us assume that the system (5.3) implies that, when t € (0, 60;,1],

x(t, to,xo) = eA(t_0L+1)x(0L+1, to,Xo) = eA(t_0L+1) (I +
B111) 'U(6141,0142) .. U(6;-1,0,)(I + B)71U(6;, tp)xg

=U(t,0,,1) U+ By 1) 'U(0141,0142) . U(0;_1,0)T + B)™1U(0;, ty)x

and also, we have that. x(0],ty,xo) and by using impulse condition, we can get
x(0y, ty, xo), by using impulse condition, we obtain.

x(0y,to, xo) = (I + By) 'x(0f,t9,x0)=(I + By)"'U(0;,0,,1) U+
B1i1) 'U(0141,0142) ... U(0;_1,0)(I + B;))"1U(6;, tg)x
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We want to find the solution of system 5.3, when t € (0;_4, 0], we have
x' = Ax
x(6;,t0,x0) = (I + B) 'U(t,0,41) U+ Bp1) 'U(0141,0142) ... U(8;_1,0)
+ B;)"1U(6;, tg)xo
Therefore,
x(t, to, xo) = eA(t_eL)x(BL, to, xo)
= e (1 + B) " 'U(0,,0141) I+ By1) *U(O141,0142) ... U(0;_1,0) (I
+ B)7'U(8;, to)xo
=U(t,0,)I+B) 'U(0,0..1) U+ Bp1) ' U(0141,0142) ... U(6;_1,0,)(I +
B)"1U(6;,to)xo
forall t < t,.
We can write the solution of the system (5.3) as piecewise function

U(t,0,)I+ B)U(By,0k_1) .. U(0;41,0)UT + B)UO;,te)xy t=t
X(t,to,xO) =11
U(t,0,)UI+B)U0;,0.,1) ...U0;_1,0)I+B) U0, te)xy t < tg

Important notice, if AB = BA, hence the solution will be as

( k )
m=i

x(t, tyg,xp) =1 1 if t=ty ;

L
U(t, ty) 1_[(1 +B,) 'x, ift<t,
\ n=i J

In this case x(t, ty, xo) = x(t, ty )xo may also be called as the matriciant.
Suppose X(t,ty) = [q;;(D]i.j =1,2,..,n, t = t,
For any solution x(t, to, x¢) and x(t, ty, yo)we have

X(t to, y0) — X(t, £, x0) = X(t, o ) (Yo — Xo)

x' = Ax,t # 0; }

5.4
Ax|;—g, = B;ix(0;) (5.4)

i) If X(¢, to )or any fundamental matrix is bounded for t > t,, then

IX ()l = ) Jay®] < M < oo

ij=1
For some M, we have

IX(t, to, yo) — X (&, to, x0) Il < IX(E, to)lIlyo — x0ll < Mllyo — xoll

[139]
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Now for any € > 0, if we choose § < —, then

£
o
lyo — xoll < & implies || X(t, £y, ¥o) — X(L, to, x0)ll < &

That is, the solution X (¢, to, xo) of (5.3) is stable

i) If !irzlollx(t, to )|l = 0, then clearly X(t, t, )is bounded for t > t, and hence (5.3) is stable,
moreover

tlimllX(t, to,Yo) — X(t, tg, x0)|| = 0 for all x,, y,. Therefore X(t,ty, xo) Or any solution is

asymptotically stable
911 " q1n x}o
X(t, tg )xg = [ P ] [ : ] = Il
An1  ° Gunl 1 Xn,

iii) If X(t,t9 ) is unbounded then q;;(t) is unbounded for some i, j then ithcomponent of
X(t, to,xo) is

X(t,to, x0) = qi1 (X190 + - + GinXno
Let yo be such that
Y10 = X10, - Yjo F Xj0, Yj+1,0 = Xj+1,0 = " Yno = Xno
Then
!E?OIIX(t, to, yo) — X(t,to, x0)|l = !i'?o||Qij(t)||||}’j,o — xjo|| = oo
Forall y;o # x;o therefore (5.3) is unstable
Theorem 5.3 [15]:

The system (5.4) is said to be stable, asymptotically stable and unstable iff X(t,t,) is
bounded !imIIX(t, to )|l = 0 and X (¢, ty) is unbounded respectively

Example 5.3.

For which k € IR, the system
X'1=-2x,&x"y =2x1,t # 0;

Axqli=p, = kx1 & Ax3 =g, = kx>

[s Stable, unstable and asymptotically stable?

Itis a clear that

_(cos2(t—s) —sin2(t—s)
¢, s) = (sinZ(t —s) cos (2(t— S))

This is a fundamental matrix solution and ¢ (s, s) = I is transition matrix
x(t,tg) = d(t,0,)(I + Bp) $p(0p,0,_1)I + By_1)... (041, 0)I + By)

[140]
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(0, t)
_ (C(.)SZ(t —0,) —sin2(t- 9,,)) (1 +k 0 ) (C(.)SZ(B,- —ty) -—sin2(0; — t0)>
sin2(t—6,) cos (2(t—0,) 0 1+k sin2(0; —ty) cos (2(0; —ty)
=@ (G50t cos ot to)
i) if [1+kl<1=-2<k<0, then, tlﬂgllx(t, to)|l = 0, thus the system is
asymptotically stable
ii) if[1+ k| >1 = k > 0or k < —2, then the system is an unstable
iii) if |1+ k| =1, (k = 0 or k = —2), then the system is a stable.

6. Conclusions

This paper focuses on the Impulsive

differential equations and describe the
Gron-wall-Bellman Lemma and conditions
of periodic systems, and also, we obtained
some important results about Linear and
stability of IDE. The future suggestion to
study Impulsive dynamic equations on time
scales, in recent years dynamic equations
on time scales have received much
attention. The time scales calculus has a
massive potential of biotechnology and
mathematical models, which we will focus

on it in future studies.
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