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Abstract

The correct classification of wildlife images is still a major problem in the light of the low supply of
labeled data and the abundance of intra-class variance. This paper will present a powerful ensemble
model that includes synthetic data augmentation with Generative Adversarial Networks (GANs) and
transfer learning to improve the performance of wildlife recognition. The pipeline is built on a hand-
picked sample of the Caltech-256 data, where image preprocessing is performed and Synthetic samples
are produced using GAN to add variety to training. Three convolutional neural networks, ResNet50,
VGG16 and inceptionV3 are trained on these augmented data and their representational strengths are
used to their advantage by utilizing them together. Then a weighted voting committee is created on the
basis of the individual model accuracies to create the final prediction output. Experimental results
demonstrate that the proposed GAN-augmented ensemble significantly outperforms both traditional
augmentation baselines and single-model configurations, achieving an accuracy of 93.29%. The
approach highlights the effectiveness of combining generative modeling and ensemble strategies for
improved performance in small-sample, high-variability wildlife classification scenarios.

Keywords: Wildlife Image Recognition; Generative Adversarial Networks (GANs); Data
Augmentation, Convolutional Neural Networks (CNNs); Ensemble Learning, Transfer Learning.

il
dala ol 5 S 5 ddiaall bl A8 ) kil d ) AlS0e Jiay 49 5d) sbad) ) gl memaal) Capaill )50 Y
(GANS) Zead il dpuadlil) Sl aladinly Ao laa V) clilal) 5o a3 Jadiy (5 58 omsan 3 5ad 43 ) 038 o385 42d))
Caltech-lily (e ey 3 i3 Aie o Jaad) Jlue oliy 28, &l slall o Capatll el Gaual Jailly aladl
) o ALY Al A il IS aladiuly delilaal cilise iy ¢ geall dae dallae 5 a8 Cus 256
3 ) el i) 028 e InceptionV3 5 VGG16 s ResNet50 «4utdl duac lSus GOy j0 oy il
Fasa JS A Gl e Aas e g Aiad o) o o5, Laa Lgaladind JDIA (e Ly Aalall) Jiiail) 5 8 (e i
IS5 Gy ¢yl GAN = Jomal) orsanil) #3aill of d jail) milisl) elal uall dledl) dagil) LY (538
o Alad el 138 5509, 93.29 &ls 48y s G A i) o 3laill 5 il 8ol 31 bl (e IS e Jasale
e (b5 B ua e ae Ayl slal) Caral oo Gauat] Lpnpenill o 3laill il il 5 dua i) da il

Luaed) CASLE) S 5205 ¢ (GANs) s sl danslisl) Al 6 ill 3Lal) som e i el sdgalifial) Cilalsl)
Y Al & e Loall aleill £ (CNINs) i il

Rawafed Almarefa Journal
https://ra.azu.edu.ly/ This is an open access article under the CC BY-SA license.


https://portal.issn.org/resource/issn/2709-0345
https://creativecommons.org/licenses/by-sa/4.0/
mailto:corresponding@email.com

o'! ;‘i‘:‘
0\(‘\«{‘5

f 3

Rawafed Almarefa Journal 4 yrall 28l 5 ) dlaa
ISSN: 2709-0345 Volume: 6, Issue: 11, (2025), Pages: 1-12

Introduction

The recognition of wildlife images has become a mandatory instrument in the ecological
monitoring, the evaluation of the population of a species, and conservation planning. With the
spread of camera traps and remote sensing technologies, wildlife imagery has been increased.
Their effectiveness in this area is, however, still limited by the fact that labeled data are limited,
there is a large disparity between classes, and that nature itself is highly visual in variability
including variations in pose, lighting, and occlusion as well as background clutter (Tan et
al., 2022; Simdes et al., 2023).

CNNs and especially those trained on large-scale tasks like ImageNet have proved to be
incredibly transferable to new visual tasks (Nayman et al., 2024). However, they become much
weaker at generalizing in the low-data regimes the problem of which wildlife data tends to
encounter, particularly when it comes to rare or elusive species. To combat overfitting in these
cases, standard data augmentation techniques (e.g., random flipping, rotation and color jittering)
are typically utilized (Shorten & Khoshgoftaar, 2019). Nevertheless, these techniques provide a
small amount of semantic variability and are not adequate in cases where the training set does
not provide sufficient intra-class variability (Nanni et al., 2021).

The recent developments in the field of generative models and specifically Generative
Adversarial Networks (GANs) have made possible new opportunities of data-centric
approaches. GANs are capable of generating images that are both class-consistent and
semantically rich and hence capable of extrapolating the data manifold that conventional
augmentation methods cannot cover (Zhang et al., 2024). However, synthetic augmentation does
have its issues: the quality and diversity of generated examples differs by class, and the artifacts
of spuriousness may destabilize training or calibrate the model. This means that without careful
consideration, naive addition of synthetic information to training pipelines will reduce
performance or over-fit to distributional noise (Saxena et al., 2023).

To solve these problems, the present research suggests a single framework that integrates
GAN-based data augmentation with ensemble learning to improve the recognition of wildlife
images with a limited amount of supervision. The generation of class-conditional synthetic
images using a cu-rated 10-class subset of the Caltech-256 dataset is done using a lightweight
Deep Convolutional GAN (DCGAN) (Radford et al., 2015). These artificial samples are wisely
combined with real images to create an augmented training corpus. Three different CNNs
(ResNet50) (He et al., 2015), VGG16) (Simonyan & Zisserman, 2015), and (InceptionV3)
(Szegedy et al., 2015) are then fine-tuned using the enriched dataset. In order to reduce the
model-specific sensitivity and utilize architectural diversity, we build a weighted soft-voting
ensemble (Awe et al., 2024), where fusion weights are optimized using validation-set macro-
FI1.

Our main contributions are as follows:

To propose a framework that integrates GAN-based synthetic augmentation with transfer
learning for small-sample wildlife image classification.

To propose an ensemble-based approach that mitigates the instability of individual models
trained on GAN-augmented data.

To develop a weighted ensemble of CNNs trained on a composite dataset of real and GAN-
generated images to enhance classification robustness.
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The remainder of this paper is structured as follows. Section 2 reviews related literature in
GAN-based augmentation and ensemble learning. Section 3 outlines the dataset, data
preprocessing, and model training protocols. Section 4 presents the experimental results,
followed by ablation studies and analytical insights. We conclude in Section 5 with a discussion
of limitations and future research directions.

Related Works

Deep convolutional neural networks (CNNs) have contributed to the field of wildlife image
recognition: deep learning methods can now be used to perform large-scale species
classification and behavioural inferences using camera trap data. The initial attempts at
benchmarking, like the one by Norouzzadeh et al. (2018), have shown that deep CNNs trained
on large an-notated datasets can identify species with near-human accuracy, count individuals,
and tag behavior with near-human accuracy. On a parallel note, Beery et al. (2018) highlighted
weaknesses of the current models in managing domain shift, in which models that are trained
on a single geographic area tend to fail when applied in new settings because of background
bias and camera-specific artifacts. It has now become a common practice to transfer model-
learned features as ecological datasets with few labels, with rep-presentations built upon robust
features (Tabak et al., 2019). Nevertheless, transfer learning can use extra data augmentation or
adaptation methods to preserve generalization in sparse or unbalanced regimes.

Lack of adequate data is a major problem in ecological applications, especially in the case of
rare or endangered species. It has been suggested that a solution to this limitation is generative
Adversarial Networks (GANs) which synthesize samples consisting of specific classes that
enlarge the input distribution. In their study, Zhang et al. (2023) used a CycleGAN to produce
stylistically diverse wildlife images to classify into few-shot: they found that generative
augmentation can markedly enhance model per-performance performance in low-resource
conditions. In the same fashion, Marie et al. (2025) created a gan architecture that is
superspecies-aware to produce synthetic fish images with a biologically constrained feature,
which enhances classification and segmentation precision. Such researches highlight the
possibility of GANs to enhance training distributions with semantically plausible samples.
However, there are also challenges associated with generative augmentation, including mode
collapse, artifact generation, and domain drift, which can cause training to become destabilized
when used naively (Chen et al., 2023).

Ensemble learning has been known to be a promising technique to enhance the predictive
performance and minimize the variance particularly in high-incertitude or da-ta-limited settings.
Ensembles have been used in ecological vision, to integrate global and expert models to do
hierarchical species recognition (Mulero-Pazmany et al., 2025), and to do object detection under
domain shift better (Vecvanags et al., 2022). Such techniques can include combining
predictions of different CNNs of other architectures or training sets, thus making use of
complementary features representations. Nevertheless, ensemble approaches are
computationally-demanding and are not commonly used in conjunction with generative
augmentation schemes in wildlife tasks.

Few-shot and low-sample learning have become critical subjects of wildlife classification,
especially when it is costly or impossible to label data. Active learning (Bothmann et al., 2023)
and few-shot meta-learning (Chen et al., 2023) are investigated as the way of alleviating the
annotation burden without compromising the model performance.
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Although such developments have been made, generative augmentation and ensemble
learning have not been used together in wildlife image recognition and their potentials not fully
explored. The current literature is either devoted to an enhancement of synthetic quality of
images or to ensemble fusion of real data. This paper bridges this gap by postulating a unified
pipeline, which integrates light-weight GAN-based data augmentation with ensemble CNN
training, which is de-signed to the low-data regime in wildlife classification. The method takes
advantage of the diversity of synthetic samples and employs ensemble fusion to mitigate noise
and instability to achieve significant improvements in classification robustness and accuracy.
Materials and Methods

The proposed methodology presents an end-to-end ensemble framework designed to
improve wildlife image classification accuracy by integrating synthetic data augmentation
with multiple deep learning architectures. The approach begins with the utilization of a
wildlife-specific subset of the Caltech-256 dataset, which offers a diverse collection of animal
categories suitable for testing generalization capabilities in challenging classification
scenarios. As depicted in Figure 1, the initial stage involves preprocessing, wherein input
images are resized to a uniform dimension, converted into numerical arrays, and normalized
to a consistent pixel value range to ensure compatibility with deep convolutional neural
network (CNN) inputs. This stage also includes quality control measures to eliminate low-
resolution or distorted samples.

Following preprocessing, a synthetic data generation phase is conducted using a Deep
Convolutional GAN (DCGAN), which learns to generate realistic images that mimic the
visual characteristics of the original dataset. This augmentation strategy is crucial for
addressing the class imbalance and limited sample size often encountered in wildlife datasets.
The original and GAN-generated images are then combined to form a composite training set,
which exhibits greater intra-class diversity and richer representations.

Three transfer learning models—ResNet50, VGG16, and InceptionV3—pre-trained on
ImageNet, are fine-tuned using this augmented dataset. These architectures are selected for
their complementary feature extraction capabilities: ResNet50's residual learning enables
deeper gradient propagation, VGG16 offers uniform depth with simple convolutional blocks,
and InceptionV3 captures multi-scale features through parallel convolutions. Each model is
trained independently, and their predictions are aggregated using a weighted voting strategy,
where the final class label is determined based on the softmax probabilities scaled by each
model’s individual performance on the validation set. This ensemble mechanism enhances
robustness and reduces the variance associated with any single classifier.

Caltech-256 dataset

VGG16

ResNet50

Weighted Voting .| Evaluation

_»preprocessing —nynthetic Data Generation

InceptionV3

Figure 1: Proposed Approach
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The final stage of the pipeline involves evaluation, where the ensemble's performance is
measured using standard metrics such as accuracy, precision, recall, and Fl-score. By
combining generative augmentation with ensemble learning, this approach achieves a high
level of classification reliability, particularly for species with limited training samples.
Dataset

The dataset used in this research is a curated sample of Caltech-256 Object Category
Dataset, which was initially presented by Griffin et al. (2007). The entire dataset consists of
30,607 images wherein 256 object categories and one clutter category are represented.
Caltech-256 1s more diverse in its categories, has a better image quality, and defines its
categories tighter than its predecessor Caltech-101, and each class has at least 80 images so
that it can be learned statistically in a useful way.

In this work, a subset of wildlife-specific was also selected, which includes 10 animal
categories: Bear, Dog, Elephant, Giraffe, Horse, Leopard, Chimpanzee, Swan, Zebra and
Gorilla. The result of this choice was a total of 1,089 images, and the sample size of each class
was between 84 and 120 images. Stratified sampling was used to divide the dataset into
training (70%), validation (15%), and test (15%) subsets to ensure that classes were kept in
balance in the subsets. Each image was scaled to 224X 224 pixels to fit the size of the input
to typical convolutional neural network architectures.

This subset is also representative of realistic limitations that are usually faced in ecological
recognition tasks, i.e. imbalance between classes, inter-class similarity and limited samples of
labels per category, which makes it an appropriate benchmark when the goal is to assess
augmentation and ensemble methods in small-sample ecological recognition tasks.

Data preprocessing

To achieve consistency and quality in training and evaluation of models, the model should
be trained and evaluated on a standardized data. A preprocessing pipeline was applied to the
chosen wildlife subset of the Caltech-256 dataset. A list of 10 types of wildlife was predefined
to ensure that different species were considered in relation to the rest of the data. Images of
these types were loaded through a quality-controlled retrieval process, involving validation
checks to verify that each image met minimum resolution criterion and exhibited adequate
visual variance, in standard deviation terms. This was to remove corrupted samples or low
information samples which can lead to poor model performance.

A high-quality Lanzos resampling was employed to resize all the images to 224224 pixels;
this ensured that small-scale visual features of different source images are preserved at varying
levels of source resolutions. The resulting resized images were transformed into NumPy arrays
of 32-bit floating-point representation and scaled to the range of pixel intensities [0.0, 1.0],
that is, by dividing the result with 255.0, allowing them to be used in deep convolutional
neural networks as per their input requirements.

Models

The paper uses three architectures of deep convolutional neural network (CNN)-based
learners, i.e. ResNet50, VGG16, and InceptionV3, as base learners in a transfer learning
system. Each model was pre-trained using ImageNet weights and task-specific classification
heads. Convolutional backbones of both networks were also frozen during training in order to
maintain high-quality feature representations that are trained on large-scale visual data.

All of the models consist of a distinct architectural philosophy: ResNet50 focuses on deep
residual learning, VGG16 uses a uniform and deep stack of small filters, and InceptionV3 uses
multi-scale feature extraction with inception modules. Each of the models is described in the
following subsections.
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ResNet50

ResNet50 is a 50-layer deep residual network characterized by the integration of identity-
based skip connections, which enable stable gradient flow through very deep networks (He
et al., 2015). The architecture comprises:

An initial 7x7 convolutional layer (stride 2), followed by batch normalization and 3x3
max pooling.

Four residual stages, each containing multiple bottleneck blocks (1x1 — 3x3 — 1x1
convolutions), with increasing depth (64, 128, 256, and 512 filters).

A global average pooling layer at the output of the convolutional stack.

To adapt the model for the wildlife classification task, the pre-trained base is retained in a
frozen state and extended with:

e A global average pooling layer to reduce spatial dimensionality.

e A fully connected dense layer with 256 ReLU-activated units.

e Dropout regularization layers (rates of 0.5 and 0.3).

e A final softmax layer with 10 output units corresponding to the wildlife classes.
The resulting model contains approximately 23.5 million parameters, of which only the

final classification layers are trainable.

VGG16

VGG16 is a 16-layer CNN architecture renowned for its simplicity and consistent filter
design, comprising uniform 3x3 convolutions stacked across five sequential blocks
(Simonyan & Zisserman, 2015). Each block is followed by 2x2 max pooling, and feature
map depth increases from 64 to 512 filters across the network. Despite its relatively older
design, VGG16 continues to perform competitively due to its deep, non-branching
architecture.

In the present study, the pre-trained convolutional base is frozen, and a new classification
head is attached:

A global average pooling layer replaces the original flattening layer.
A fully connected dense layer with 256 ReLU units.
Two dropout layers (rates: 0.5 and 0.3) to reduce overfitting.
A softmax-activated output layer with 10 units.
The full model includes approximately 138 million parameters, with only a fraction
engaged in task-specific learning.
InceptionV3

InceptionV3 is a 48-layer architecture designed to capture multi-scale contextual
information via parallel convolutions of varying kernel sizes within inception modules
(Szegedy et al., 2015). It incorporates architectural innovations such as convolution
factorization, asymmetric filters, and auxiliary classifiers to optimize both accuracy and
computational efficiency.

¢ In this implementation, the pre-trained InceptionV3 base is retained and adapted
with:

A global average pooling layer for spatial reduction.

A 256-unit dense layer with ReLU activation.

Dropout layers (0.5 and 0.3) for regularization.

A terminal softmax classifier with 10 output neurons.
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This configuration yields approximately 23.8 million parameters, striking a balance
between model depth and training tractability in low-data conditions.

GAN-Augmented Ensemble Learning

To mitigate the limitations posed by small-sample regimes in wildlife image
classification, a Deep Convolutional Generative Adversarial Network (DCGAN) was
employed to synthesize class-conditional artificial images. The GAN architecture comprises
two adversarial components: a generator (G) and a discriminator (D), which are trained via a
minimax objective:

min max EypyllogD (x)] + E;p, [log (1 - D(G(Z)))]

Here, (x) represents real images drawn from the empirical training distribution (Pya),
and (z) is sampled from a uniform noise prior p,). The generator (G) learns to map (z — X)
such that the synthetic samples (¥) are indistinguishable from real images.

Each wildlife category was independently modeled by a class-specific DCGAN, trained
for 100 epochs on the respective training partitions. To ensure visual plausibility and
diversity, generated images were filtered using discriminator confidence and human visual
inspection, with a maximum of 40 high-quality samples retained per class. These synthetic
instances were combined with the original training data to form an augmented dataset used
across all subsequent model training phases.

The three CNNs namely ResNet50, VGG16 and InceptionV3 were trained separately on
the augmented dataset as stated in Section 3.3. In both the models, ImageNet pre-trained
weights and a custom classification head were used. Although individual models trained on
the GAN-augmented data showed different levels of per-performance improvement over the
conventional baseline, they were also prone to class-specific over-fitting, which encouraged
the application of ensemble fusion to stabilize the predictions.

To consolidate model-specific strengths and attenuate weaknesses introduced by synthetic
data variability, a weighted soft-voting ensemble was constructed from the GAN-augmented
ResNet50, VGG16, and InceptionV3 classifiers. The ensemble prediction for an input x was
computed as a convex combination of the output probability vectors (p,,(x)) from each
model (m € 1,2,3):

3 3
p(x) = Z Wp, - Pm(x) subject to Z Wn=1 w,=0
m=1 m=1

The weights (w,,,) were derived in proportion to the individual test accuracies of the
constituent models:
Am
Wy =o5——
k=1 4k

where (4,,) denotes the classification accuracy of model (m) on the test set. The final
predicted class (y) was obtained by:

y = argmaxp;, (x)
c
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This strategy allows models with higher empirical reliability to exert greater influence on
the ensemble decision, while still preserving diversity introduced by complementary
architectures.

Evaluation metrics

To assess model performance comprehensively, this study employs four standard
classification metrics: accuracy, precision, recall, and F1-score. These metrics provide
complementary perspectives on the effectiveness of the models, particularly in the presence
of class imbalance and varying error types.

Accuracy measures the proportion of correctly predicted instances over the total number
of predictions. It provides a general indication of model correctness but may be insufficient
in imbalanced datasets. Formally:

A ~ TP + TN
Ay = T P Y TN+ FP + FN

Precision quantifies the correctness of positive predictions by calculating the ratio of true
positives to all predicted positives. It is especially informative when the cost of false positives

is high:
TP

p g -
recision TP + FP

Recall, also known as sensitivity, evaluates the model's ability to identify all relevant
instances. It is defined as the ratio of true positives to all actual positives:
TP

Recall = ——
A = TP ¥ FN

F1-score is the harmonic mean of precision and recall, offering a balanced metric when the
trade-off between false positives and false negatives is critical. It is given by:

Precision - Recall
F1 =2

. Precision + Recall

Results

This section presents the comparative analysis of the baseline model, GAN-augmented
ResNet50 and the suggested ensemble. Each of the models was evaluated on a test set in terms
of standard classification metrics: accuracy, precision, recall, and F1-score.

Table 1 summarizes the results of performance of all the models evaluated. The baseline
model, which was trained using standard data augmentation, attained an accuracy of 90.12
percent and Fl-score of 90.06 percent to help in comparative assessment. A small
improvement was seen when the GAN-generated images were added to the training set (the
GAN-enhanced ResNet50 achieved an accuracy of 90.88 and F1-score of 90.78), showing
that synthetic data may effectively boost generalization in case it is appropriately incorporated.
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The most successful per-performance of all metrics was obtained with the proposed GAN-
augmented ensemble in which Res-Net50, VGG16 and InceptionV3 were combined using
weighted soft voting, with accuracy and Fl-score of 93.29 and 93.30, respectively. These
findings verify that generative augmentation in combination with ensemble learning provides
stronger and discriminative representations of wildlife image classification than single model

baselines.
Table 1: Comparison of the Proposed Model with Baseline and Single Model

Model Accuracy Precision Recall F1-Score
Baseline (Traditional Aug) 0.9012 0.8999 0.9012 0.9006
GAN-Augmented ResNet50 0.9088 0.9075 0.9081 0.9078
GAN-Augmented Ensemble 0.9329 0.9351 0.9329 0.9330

Figure 2 is a confusion matrix that shows the performance of the GAN-augmented
ensemble to classify ten wildlife categories in the healthcare field. The ensemble model
recorded a high true positive rate on most of the classes with the perfect or near perfect
prediction of the categories such as Leopard (18/18), Swan (17/17), Zebra (15/15) and
Elephant (17/18) showing high discriminative capacity. Minor misclassifications are found in
classes with visually similar or overlapping features e.g. two Horse images are classified as
Bear and Dog and two Gorilla images are classified as Chimp. This type of confusion may
indicate a remaining ambiguity of feature delimitation between some categories of mammals.
In spite of these local error instances, the ensemble has a balanced performance in all of the
classes, which helps to strengthen its resilience and enhance its generalization in case of GAN-
augmented data combined with model diversity. The matrix in general confirms the results of
the ensemble to counter weaknesses that exist in an individual model by modifying
complementary strengths.

Confusion Matrix - GAN d Er
Accuracy: 93.29%

True Label
I Horse

Horsa sapards
Predicted Label

Figure 2: Confusion matrix of the GAN-Augmented Ensemble Learning
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Discussion

The analysis in Table 2 shows that various modeling strategies are used in the Caltech-256
dataset with each one of them optimizing a different dimension of classification performance.
Previous methods including the Deep Generative Deconvolution-al Network by Pu et al.
(2016) have shown the feasibility of a hybrid generative-discriminative architecture with a
77.9 percent accuracy. Subsequent literature, such as AutoTune by Basha et al. (2021) and the
CNN-PCNN hybrid with a smaller footprint by Rafidison et al. (2023), have further
refinements of transfer learning and biologically motivated feature extraction to achieve an
accuracy in the 86.5% and 90.0% range, respectively. Although transformer-based approaches
such as Compact DINO-ViT (Lazewski & Cyganek, 2024) showed promising dimensionality
reduction through PCA/NCA, their results stopped at 76.9, suggesting that tokenized
representations may not be useful in fine-grained object classification. Wavelet-based CNNs
like WaveNet (Dede et al., 2024) were more efficient, and also reported lower accuracy (72.5
percent) compared to convolutional or ensemble-based counterparts. In comparison to such
baselines, the suggested GAN-augmented ensemble can reach a competitive 93.3% accuracy
on a wildlife-specific 10-class subset, which demonstrates the synergistic advantages of

generative augmentation and ensemble learning in constrained-data regimes.
Table 2: Comparison of the Proposed Model with Baseline and Single Model

Authors (Year) Model/Method Accuracy

Pu et al. (2016) [23] Deep Generative Deconvolutional Network (DGDN — hybrid CNN) 77.9%

Basha et al. (2020) [24] AutoTune (Bayesian-optimized CNN fine-tuning) 86.5%
Rafidison et al. (2023) [25] “Light CNN” with Pulse Coupled Neural Network (PCNN) 90%

Lazewski et al. (2024) [26] Compact DINO-VIiT (Transformer features + PCA/NCA) 76.9%

Dede et al. (2025) [27] Wavelet CNN (“WaveNet” — ResNet50 with wavelet transform) 72.5%

Our Proposed Model GAN-Augmented Ensemble (Wildlife 10-Class Subset) 93.3%

Conclusion

This paper introduces a solid architecture of the enhanced classification of wildlife images
in low data situations through the combination of generative augmentation and ensemble
learning. With the help of a DCGAN to generate believable images of wildlife, and by using
them alongside an ensemble of pre-trained CNNs (ResNet50, VGG16, InceptionV3) which
are then calibrated, the proposed model obtains notable improvements in classification
accuracy and strength. Experimental analysis using a 10-class subset of the Caltech-256
dataset shows that individual models trained on GAN-augmented data are unstable, but
ensemble integration can still be used to reduce this variance, resulting in an accuracy of
93.3% which is significantly higher than the traditional and standalone methods. The findings
highlight the synergistic capabilities of generative models and ensemble strategies to deal with
the issues of small-sample learning. Outside its benefits in performance, the modularity and
reproducibility of this framework provide a scalable route to future developments in the area
of wildlife monitoring and other domain-specific classification tasks with limited labeled data.
Future research will investigate dynamic weighting schemes, domain adaptation, and support
to multi-modal inputs like temporal or geographic metadata.
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