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Abstract 

The correct classification of wildlife images is still a major problem in the light of the low supply of 

labeled data and the abundance of intra-class variance. This paper will present a powerful ensemble 

model that includes synthetic data augmentation with Generative Adversarial Networks (GANs) and 

transfer learning to improve the performance of wildlife recognition. The pipeline is built on a hand-

picked sample of the Caltech-256 data, where image preprocessing is performed and Synthetic samples 

are produced using GAN to add variety to training. Three convolutional neural networks, ResNet50, 

VGG16 and inceptionV3 are trained on these augmented data and their representational strengths are 

used to their advantage by utilizing them together. Then a weighted voting committee is created on the 

basis of the individual model accuracies to create the final prediction output. Experimental results 

demonstrate that the proposed GAN-augmented ensemble significantly outperforms both traditional 

augmentation baselines and single-model configurations, achieving an accuracy of 93.29%. The 

approach highlights the effectiveness of combining generative modeling and ensemble strategies for 

improved performance in small-sample, high-variability wildlife classification scenarios. 

Keywords: Wildlife Image Recognition; Generative Adversarial Networks (GANs); Data 

Augmentation; Convolutional Neural Networks (CNNs); Ensemble Learning; Transfer Learning. 

 

 الملخص

التباين داخل   وكثرة   المصنفةبالنظر إلى قلة البيانات    رئيسيةلا يزال التصنيف الصحيح لصور الحياة البرية يمثل مشكلة  

 (GANs) البيانات الاصطناعية باستخدام الشبكات التنافسية التوليدية  تعزيزنموذج تجميعي قوي يشمل    تقُدمّ هذه الورقة .الفئة

-Caltech تم بناء مسار العمل على عينة مختارة بعناية من بيانات .بالنقل لتحسين أداء التعرف على الحياة البرية  والتعلم

، حيث تجُرى معالجة مسبقة للصور، وتنُتج عينات اصطناعية باستخدام الشبكات التوليدية التنافسية لإضافة تنوع إلى 256

على هذه البيانات المعززة،  InceptionV3 و VGG16 و   ResNet50،  تلافيفيهيتم تدريب ثلاث شبكات عصبية    التدريب.

ثم يتم إنشاء لجنة تصويت مرجّحة على أساس دقة كل نموذج   .ويسُتفاد من قوة التمثيل الخاصة بها من خلال استخدامها معا  

للتنبؤ النهائية  النتيجة  بـ .فردي لإنتاج  المعزز  التجميعي  النموذج  أن  التجريبية  النتائج  يتفوق بشكل   GAN تظُهر  المقترح 

الفردية، حيث حقق دقة تبلغ   التقليدية والنماذج  النهج فعالية دمج   .%93.29ملحوظ على كل من أساليب الزيادة  يبرز هذا 

 .النمذجة التوليدية واستراتيجيات النماذج التجميعية لتحسين الأداء في تصنيف الحياة البرية مع عينات صغيرة وتباين عالي

 العصبية   الشبكات  البيانات؛  زيادة  ؛(GANs) التوليدي    التنافسية  الشبكات  البرية؛  الحياة  صور  على  التعرف :  المفتاحية  الكلمات

 .الانتقالي التعلم الجماعي؛ التعلم ؛(CNNs) التلافيفية
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Introduction 

The recognition of wildlife images has become a mandatory instrument in the ecological 

monitoring, the evaluation of the population of a species, and conservation planning. With the 

spread of camera traps and remote sensing technologies, wildlife imagery has been increased. 

Their effectiveness in this area is, however, still limited by the fact that labeled data are limited, 

there is a large disparity between classes, and that nature itself is highly visual in variability 

including variations in pose, lighting, and occlusion as well as background clutter (Tan et 

al., 2022; Simões et al., 2023). 

CNNs and especially those trained on large-scale tasks like ImageNet have proved to be 

incredibly transferable to new visual tasks (Nayman et al., 2024). However, they become much 

weaker at generalizing in the low-data regimes the problem of which wildlife data tends to 

encounter, particularly when it comes to rare or elusive species. To combat overfitting in these 

cases, standard data augmentation techniques (e.g., random flipping, rotation and color jittering) 

are typically utilized (Shorten & Khoshgoftaar, 2019). Nevertheless, these techniques provide a 

small amount of semantic variability and are not adequate in cases where the training set does 

not provide sufficient intra-class variability (Nanni et al., 2021). 

The recent developments in the field of generative models and specifically Generative 

Adversarial Networks (GANs) have made possible new opportunities of data-centric 

approaches. GANs are capable of generating images that are both class-consistent and 

semantically rich and hence capable of extrapolating the data manifold that conventional 

augmentation methods cannot cover (Zhang et al., 2024). However, synthetic augmentation does 

have its issues: the quality and diversity of generated examples differs by class, and the artifacts 

of spuriousness may destabilize training or calibrate the model. This means that without careful 

consideration, naive addition of synthetic information to training pipelines will reduce 

performance or over-fit to distributional noise (Saxena et al., 2023). 

To solve these problems, the present research suggests a single framework that integrates 

GAN-based data augmentation with ensemble learning to improve the recognition of wildlife 

images with a limited amount of supervision. The generation of class-conditional synthetic 

images using a cu-rated 10-class subset of the Caltech-256 dataset is done using a lightweight 

Deep Convolutional GAN (DCGAN) (Radford et al., 2015). These artificial samples are wisely 

combined with real images to create an augmented training corpus. Three different CNNs 

(ResNet50) (He et al., 2015), VGG16) (Simonyan & Zisserman, 2015), and (InceptionV3) 

(Szegedy et al., 2015) are then fine-tuned using the enriched dataset. In order to reduce the 

model-specific sensitivity and utilize architectural diversity, we build a weighted soft-voting 

ensemble (Awe et al., 2024), where fusion weights are optimized using validation-set macro-

F1. 

   Our main contributions are as follows: 

To propose a framework that integrates GAN-based synthetic augmentation with transfer 

learning for small-sample wildlife image classification. 

To propose an ensemble-based approach that mitigates the instability of individual models 

trained on GAN-augmented data. 

To develop a weighted ensemble of CNNs trained on a composite dataset of real and GAN-

generated images to enhance classification robustness. 
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The remainder of this paper is structured as follows. Section 2 reviews related literature in 

GAN-based augmentation and ensemble learning. Section 3 outlines the dataset, data 

preprocessing, and model training protocols. Section 4 presents the experimental results, 

followed by ablation studies and analytical insights. We conclude in Section 5 with a discussion 

of limitations and future research directions. 

Related Works  

Deep convolutional neural networks (CNNs) have contributed to the field of wildlife image 

recognition: deep learning methods can now be used to perform large-scale species 

classification and behavioural inferences using camera trap data. The initial attempts at 

benchmarking, like the one by Norouzzadeh et al. (2018), have shown that deep CNNs trained 

on large an-notated datasets can identify species with near-human accuracy, count individuals, 

and tag behavior with near-human accuracy. On a parallel note, Beery et al. (2018) highlighted 

weaknesses of the current models in managing domain shift, in which models that are trained 

on a single geographic area tend to fail when applied in new settings because of background 

bias and camera-specific artifacts. It has now become a common practice to transfer model-

learned features as ecological datasets with few labels, with rep-presentations built upon robust 

features (Tabak et al., 2019). Nevertheless, transfer learning can use extra data augmentation or 

adaptation methods to preserve generalization in sparse or unbalanced regimes. 

Lack of adequate data is a major problem in ecological applications, especially in the case of 

rare or endangered species. It has been suggested that a solution to this limitation is generative 

Adversarial Networks (GANs) which synthesize samples consisting of specific classes that 

enlarge the input distribution. In their study, Zhang et al. (2023)  used a CycleGAN to produce 

stylistically diverse wildlife images to classify into few-shot: they found that generative 

augmentation can markedly enhance model per-performance performance in low-resource 

conditions. In the same fashion, Marie et al. (2025) created a gan architecture that is 

superspecies-aware to produce synthetic fish images with a biologically constrained feature, 

which enhances classification and segmentation precision. Such researches highlight the 

possibility of GANs to enhance training distributions with semantically plausible samples. 

However, there are also challenges associated with generative augmentation, including mode 

collapse, artifact generation, and domain drift, which can cause training to become destabilized 

when used naively (Chen et al., 2023). 

Ensemble learning has been known to be a promising technique to enhance the predictive 

performance and minimize the variance particularly in high-incertitude or da-ta-limited settings. 

Ensembles have been used in ecological vision, to integrate global and expert models to do 

hierarchical species recognition (Mulero-Pázmány et al., 2025), and to do object detection under 

domain shift better (Vecvanags et al., 2022). Such techniques can include combining 

predictions of different CNNs of other architectures or training sets, thus making use of 

complementary features representations. Nevertheless, ensemble approaches are 

computationally-demanding and are not commonly used in conjunction with generative 

augmentation schemes in wildlife tasks. 

Few-shot and low-sample learning have become critical subjects of wildlife classification, 

especially when it is costly or impossible to label data. Active learning (Bothmann et al., 2023) 

and few-shot meta-learning (Chen et al., 2023) are investigated as the way of alleviating the 

annotation burden without compromising the model performance.   

https://portal.issn.org/resource/issn/2709-0345
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Although such developments have been made, generative augmentation and ensemble 

learning have not been used together in wildlife image recognition and their potentials not fully 

explored. The current literature is either devoted to an enhancement of synthetic quality of 

images or to ensemble fusion of real data. This paper bridges this gap by postulating a unified 

pipeline, which integrates light-weight GAN-based data augmentation with ensemble CNN 

training, which is de-signed to the low-data regime in wildlife classification. The method takes 

advantage of the diversity of synthetic samples and employs ensemble fusion to mitigate noise 

and instability to achieve significant improvements in classification robustness and accuracy. 

Materials and Methods 

The proposed methodology presents an end-to-end ensemble framework designed to 
improve wildlife image classification accuracy by integrating synthetic data augmentation 
with multiple deep learning architectures. The approach begins with the utilization of a 
wildlife-specific subset of the Caltech-256 dataset, which offers a diverse collection of animal 
categories suitable for testing generalization capabilities in challenging classification 
scenarios. As depicted in Figure 1, the initial stage involves preprocessing, wherein input 
images are resized to a uniform dimension, converted into numerical arrays, and normalized 
to a consistent pixel value range to ensure compatibility with deep convolutional neural 
network (CNN) inputs. This stage also includes quality control measures to eliminate low-
resolution or distorted samples. 

Following preprocessing, a synthetic data generation phase is conducted using a Deep 
Convolutional GAN (DCGAN), which learns to generate realistic images that mimic the 
visual characteristics of the original dataset. This augmentation strategy is crucial for 
addressing the class imbalance and limited sample size often encountered in wildlife datasets. 
The original and GAN-generated images are then combined to form a composite training set, 
which exhibits greater intra-class diversity and richer representations. 

Three transfer learning models—ResNet50, VGG16, and InceptionV3—pre-trained on 
ImageNet, are fine-tuned using this augmented dataset. These architectures are selected for 
their complementary feature extraction capabilities: ResNet50's residual learning enables 
deeper gradient propagation, VGG16 offers uniform depth with simple convolutional blocks, 
and InceptionV3 captures multi-scale features through parallel convolutions. Each model is 
trained independently, and their predictions are aggregated using a weighted voting strategy, 
where the final class label is determined based on the softmax probabilities scaled by each 
model’s individual performance on the validation set. This ensemble mechanism enhances 
robustness and reduces the variance associated with any single classifier. 

 

 

 

 

 

Figure 1: Proposed Approach 
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The final stage of the pipeline involves evaluation, where the ensemble's performance is 
measured using standard metrics such as accuracy, precision, recall, and F1-score. By 
combining generative augmentation with ensemble learning, this approach achieves a high 
level of classification reliability, particularly for species with limited training samples.  

Dataset  

The dataset used in this research is a curated sample of Caltech-256 Object Category 
Dataset, which was initially presented by Griffin et al. (2007). The entire dataset consists of 
30,607 images wherein 256 object categories and one clutter category are represented. 
Caltech-256 is more diverse in its categories, has a better image quality, and defines its 
categories tighter than its predecessor Caltech-101, and each class has at least 80 images so 
that it can be learned statistically in a useful way. 

In this work, a subset of wildlife-specific was also selected, which includes 10 animal 
categories: Bear, Dog, Elephant, Giraffe, Horse, Leopard, Chimpanzee, Swan, Zebra and 
Gorilla. The result of this choice was a total of 1,089 images, and the sample size of each class 
was between 84 and 120 images. Stratified sampling was used to divide the dataset into 
training (70%), validation (15%), and test (15%) subsets to ensure that classes were kept in 
balance in the subsets. Each image was scaled to 224X 224 pixels to fit the size of the input 
to typical convolutional neural network architectures. 

This subset is also representative of realistic limitations that are usually faced in ecological 
recognition tasks, i.e. imbalance between classes, inter-class similarity and limited samples of 
labels per category, which makes it an appropriate benchmark when the goal is to assess 
augmentation and ensemble methods in small-sample ecological recognition tasks. 

 Data preprocessing 

To achieve consistency and quality in training and evaluation of models, the model should 
be trained and evaluated on a standardized data. A preprocessing pipeline was applied to the 
chosen wildlife subset of the Caltech-256 dataset. A list of 10 types of wildlife was predefined 
to ensure that different species were considered in relation to the rest of the data. Images of 
these types were loaded through a quality-controlled retrieval process, involving validation 
checks to verify that each image met minimum resolution criterion and exhibited adequate 
visual variance, in standard deviation terms. This was to remove corrupted samples or low 
information samples which can lead to poor model performance. 

A high-quality Lanzos resampling was employed to resize all the images to 224224 pixels; 
this ensured that small-scale visual features of different source images are preserved at varying 
levels of source resolutions. The resulting resized images were transformed into NumPy arrays 
of 32-bit floating-point representation and scaled to the range of pixel intensities [0.0, 1.0], 
that is, by dividing the result with 255.0, allowing them to be used in deep convolutional 
neural networks as per their input requirements. 

Models 

The paper uses three architectures of deep convolutional neural network (CNN)-based 
learners, i.e. ResNet50, VGG16, and InceptionV3, as base learners in a transfer learning 
system. Each model was pre-trained using ImageNet weights and task-specific classification 
heads. Convolutional backbones of both networks were also frozen during training in order to 
maintain high-quality feature representations that are trained on large-scale visual data. 

All of the models consist of a distinct architectural philosophy: ResNet50 focuses on deep 
residual learning, VGG16 uses a uniform and deep stack of small filters, and InceptionV3 uses 
multi-scale feature extraction with inception modules. Each of the models is described in the 
following subsections. 

https://portal.issn.org/resource/issn/2709-0345
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ResNet50 

ResNet50 is a 50-layer deep residual network characterized by the integration of identity-
based skip connections, which enable stable gradient flow through very deep networks (He 

et al., 2015). The architecture comprises: 
An initial 7×7 convolutional layer (stride 2), followed by batch normalization and 3×3 

max pooling. 
Four residual stages, each containing multiple bottleneck blocks (1×1 → 3×3 → 1×1 

convolutions), with increasing depth (64, 128, 256, and 512 filters). 
A global average pooling layer at the output of the convolutional stack. 
To adapt the model for the wildlife classification task, the pre-trained base is retained in a 

frozen state and extended with: 

• A global average pooling layer to reduce spatial dimensionality. 

• A fully connected dense layer with 256 ReLU-activated units. 

• Dropout regularization layers (rates of 0.5 and 0.3). 

• A final softmax layer with 10 output units corresponding to the wildlife classes. 

The resulting model contains approximately 23.5 million parameters, of which only the 
final classification layers are trainable. 

VGG16 

VGG16 is a 16-layer CNN architecture renowned for its simplicity and consistent filter 
design, comprising uniform 3×3 convolutions stacked across five sequential blocks 
(Simonyan & Zisserman, 2015). Each block is followed by 2×2 max pooling, and feature 
map depth increases from 64 to 512 filters across the network. Despite its relatively older 
design, VGG16 continues to perform competitively due to its deep, non-branching 
architecture. 

In the present study, the pre-trained convolutional base is frozen, and a new classification 
head is attached: 

• A global average pooling layer replaces the original flattening layer. 

• A fully connected dense layer with 256 ReLU units. 

• Two dropout layers (rates: 0.5 and 0.3) to reduce overfitting. 

• A softmax-activated output layer with 10 units. 
The full model includes approximately 138 million parameters, with only a fraction 

engaged in task-specific learning. 

InceptionV3 

InceptionV3 is a 48-layer architecture designed to capture multi-scale contextual 
information via parallel convolutions of varying kernel sizes within inception modules 
(Szegedy et al., 2015). It incorporates architectural innovations such as convolution 
factorization, asymmetric filters, and auxiliary classifiers to optimize both accuracy and 
computational efficiency. 

• In this implementation, the pre-trained InceptionV3 base is retained and adapted 
with: 

• A global average pooling layer for spatial reduction. 

• A 256-unit dense layer with ReLU activation. 

• Dropout layers (0.5 and 0.3) for regularization. 

• A terminal softmax classifier with 10 output neurons. 

https://portal.issn.org/resource/issn/2709-0345
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This configuration yields approximately 23.8 million parameters, striking a balance 
between model depth and training tractability in low-data conditions. 

GAN-Augmented Ensemble Learning 

To mitigate the limitations posed by small-sample regimes in wildlife image 
classification, a Deep Convolutional Generative Adversarial Network (DCGAN) was 
employed to synthesize class-conditional artificial images. The GAN architecture comprises 
two adversarial components: a generator (G) and a discriminator (D), which are trained via a 
minimax objective:  

min
𝐺

max
𝐷

𝐸𝒙∼𝑝dt
[log 𝐷 (𝒙)] + 𝐸𝒛∼𝑝𝒛

[log (1 − 𝐷(𝐺(𝒛)))] 

Here, (𝑥) represents real images drawn from the empirical training distribution (𝑝data), 
and (𝑧) is sampled from a uniform noise prior  𝑝𝑧). The generator (G) learns to map (𝑧 → 𝑥̃) 
such that the synthetic samples (𝑥̃) are indistinguishable from real images.  

Each wildlife category was independently modeled by a class-specific DCGAN, trained 
for 100 epochs on the respective training partitions. To ensure visual plausibility and 
diversity, generated images were filtered using discriminator confidence and human visual 
inspection, with a maximum of 40 high-quality samples retained per class. These synthetic 
instances were combined with the original training data to form an augmented dataset used 
across all subsequent model training phases.  

The three CNNs namely ResNet50, VGG16 and InceptionV3 were trained separately on 
the augmented dataset as stated in Section 3.3. In both the models, ImageNet pre-trained 
weights and a custom classification head were used. Although individual models trained on 
the GAN-augmented data showed different levels of per-performance improvement over the 
conventional baseline, they were also prone to class-specific over-fitting, which encouraged 
the application of ensemble fusion to stabilize the predictions.   

To consolidate model-specific strengths and attenuate weaknesses introduced by synthetic 

data variability, a weighted soft-voting ensemble was constructed from the GAN-augmented 

ResNet50, VGG16, and InceptionV3 classifiers. The ensemble prediction for an input 𝑥 was 

computed as a convex combination of the output probability vectors (𝑝𝑚(𝑥)) from each 

model (𝑚 ∈ 1,2,3):  

𝑝̂(𝑥) = ∑ 𝑤𝑚

3

𝑚=1

⋅ 𝑝𝑚(𝑥) subject to ∑ 𝑤𝑚

3

𝑚=1

= 1,  𝑤𝑚 ≥ 0 

The weights (𝑤𝑚) were derived in proportion to the individual test accuracies of the 

constituent models:  

𝑤𝑚 =
𝐴𝑚

∑ 𝐴𝑘
3
𝑘=1

 

 

where (𝐴𝑚) denotes the classification accuracy of model (m) on the test set. The final 

predicted class (𝑦̂) was obtained by:  
 

 𝑦̂ = arg max
𝑐

𝑝𝑐̂ (𝑥) 
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This strategy allows models with higher empirical reliability to exert greater influence on 

the ensemble decision, while still preserving diversity introduced by complementary 

architectures.  

Evaluation metrics  

To assess model performance comprehensively, this study employs four standard 

classification metrics: accuracy, precision, recall, and F1-score. These metrics provide 

complementary perspectives on the effectiveness of the models, particularly in the presence 

of class imbalance and varying error types. 

Accuracy measures the proportion of correctly predicted instances over the total number 

of predictions. It provides a general indication of model correctness but may be insufficient 

in imbalanced datasets. Formally: 

Accuracy =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

Precision quantifies the correctness of positive predictions by calculating the ratio of true 

positives to all predicted positives. It is especially informative when the cost of false positives 

is high: 

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 

Recall, also known as sensitivity, evaluates the model's ability to identify all relevant 

instances. It is defined as the ratio of true positives to all actual positives: 

Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

F1-score is the harmonic mean of precision and recall, offering a balanced metric when the 

trade-off between false positives and false negatives is critical. It is given by: 

F1 = 2 ⋅
Precision ⋅ Recall

Precision + Recall
 

 

Results 

This section presents the comparative analysis of the baseline model, GAN-augmented 

ResNet50 and the suggested ensemble. Each of the models was evaluated on a test set in terms 

of standard classification metrics: accuracy, precision, recall, and F1-score. 

Table 1 summarizes the results of performance of all the models evaluated. The baseline 

model, which was trained using standard data augmentation, attained an accuracy of 90.12 

percent and F1-score of 90.06 percent to help in comparative assessment. A small 

improvement was seen when the GAN-generated images were added to the training set (the 

GAN-enhanced ResNet50 achieved an accuracy of 90.88 and F1-score of 90.78), showing 

that synthetic data may effectively boost generalization in case it is appropriately incorporated. 
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The most successful per-performance of all metrics was obtained with the proposed GAN-

augmented ensemble in which Res-Net50, VGG16 and InceptionV3 were combined using 

weighted soft voting, with accuracy and F1-score of 93.29 and 93.30, respectively. These 

findings verify that generative augmentation in combination with ensemble learning provides 

stronger and discriminative representations of wildlife image classification than single model 

baselines. 
Table 1: Comparison of the Proposed Model with Baseline and Single Model 

Model Accuracy Precision Recall F1-Score 

Baseline (Traditional Aug) 0.9012 0.8999 0.9012 0.9006 

GAN-Augmented ResNet50 0.9088 0.9075 0.9081 0.9078 

GAN-Augmented Ensemble 0.9329 0.9351 0.9329 0.9330 

Figure 2 is a confusion matrix that shows the performance of the GAN-augmented 

ensemble to classify ten wildlife categories in the healthcare field. The ensemble model 

recorded a high true positive rate on most of the classes with the perfect or near perfect 

prediction of the categories such as Leopard (18/18), Swan (17/17), Zebra (15/15) and 

Elephant (17/18) showing high discriminative capacity. Minor misclassifications are found in 

classes with visually similar or overlapping features e.g. two Horse images are classified as 

Bear and Dog and two Gorilla images are classified as Chimp. This type of confusion may 

indicate a remaining ambiguity of feature delimitation between some categories of mammals. 

In spite of these local error instances, the ensemble has a balanced performance in all of the 

classes, which helps to strengthen its resilience and enhance its generalization in case of GAN-

augmented data combined with model diversity. The matrix in general confirms the results of 

the ensemble to counter weaknesses that exist in an individual model by modifying 

complementary strengths. 

 

Figure 2: Confusion matrix of the GAN-Augmented Ensemble Learning 
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Discussion 

The analysis in Table 2 shows that various modeling strategies are used in the Caltech-256 

dataset with each one of them optimizing a different dimension of classification performance. 

Previous methods including the Deep Generative Deconvolution-al Network by Pu et al. 

(2016) have shown the feasibility of a hybrid generative-discriminative architecture with a 

77.9 percent accuracy. Subsequent literature, such as AutoTune by Basha et al. (2021) and the 

CNN-PCNN hybrid with a smaller footprint by Rafidison et al. (2023), have further 

refinements of transfer learning and biologically motivated feature extraction to achieve an 

accuracy in the 86.5% and 90.0% range, respectively. Although transformer-based approaches 

such as Compact DINO-ViT (Łażewski & Cyganek, 2024) showed promising dimensionality 

reduction through PCA/NCA, their results stopped at 76.9, suggesting that tokenized 

representations may not be useful in fine-grained object classification. Wavelet-based CNNs 

like WaveNet (Dede et al., 2024) were more efficient, and also reported lower accuracy (72.5 

percent) compared to convolutional or ensemble-based counterparts. In comparison to such 

baselines, the suggested GAN-augmented ensemble can reach a competitive 93.3% accuracy 

on a wildlife-specific 10-class subset, which demonstrates the synergistic advantages of 

generative augmentation and ensemble learning in constrained-data regimes. 
Table 2: Comparison of the Proposed Model with Baseline and Single Model 

Authors (Year) Model/Method Accuracy 

Pu et al. (2016) [23] Deep Generative Deconvolutional Network (DGDN – hybrid CNN) 77.9%  

Basha et al. (2020) [24]  AutoTune (Bayesian-optimized CNN fine-tuning) 86.5% 

Rafidison et al. (2023) [25]  “Light CNN” with Pulse Coupled Neural Network (PCNN) 90% 

Łażewski et al. (2024) [26]  Compact DINO-ViT (Transformer features + PCA/NCA) 76.9% 

Dede et al. (2025) [27] Wavelet CNN (“WaveNet” – ResNet50 with wavelet transform) 72.5% 

Our Proposed Model GAN-Augmented Ensemble (Wildlife 10-Class Subset) 93.3% 

 

Conclusion 

This paper introduces a solid architecture of the enhanced classification of wildlife images 

in low data situations through the combination of generative augmentation and ensemble 

learning. With the help of a DCGAN to generate believable images of wildlife, and by using 

them alongside an ensemble of pre-trained CNNs (ResNet50, VGG16, InceptionV3) which 

are then calibrated, the proposed model obtains notable improvements in classification 

accuracy and strength. Experimental analysis using a 10-class subset of the Caltech-256 

dataset shows that individual models trained on GAN-augmented data are unstable, but 

ensemble integration can still be used to reduce this variance, resulting in an accuracy of 

93.3% which is significantly higher than the traditional and standalone methods. The findings 

highlight the synergistic capabilities of generative models and ensemble strategies to deal with 

the issues of small-sample learning. Outside its benefits in performance, the modularity and 

reproducibility of this framework provide a scalable route to future developments in the area 

of wildlife monitoring and other domain-specific classification tasks with limited labeled data. 

Future research will investigate dynamic weighting schemes, domain adaptation, and support 

to multi-modal inputs like temporal or geographic metadata. 
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