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Abstract

In this paper, we obtained some results concerning the generalized Hadamard products of
certian meromorphic uniformly starlike and convex functions with positive coefficients.
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product.

1. Introduction
Let X denote the class of meromorphic functions of the form:

f (z):zl+gakz", (1.1)

which are analytic and univalent in the punctured unit disc

U'={z :zeCand0< |z]<1}.
A function f (z) e Xis meromorhpically starlike of order « if

_ReH @) >a(z U™ 0<a<l). (1.2)
f(z)

We denote by XS *(«) the class of all meromorphically starlike functions of order «.

A function f (z)in X is said to be meromorphically convex of order « if

_Rel1+2@) >a(z eU"0<a<). (1.3)
f'(z)
And we denote by XK («) the class of all meromorphically convex functions of

order a.

The classesXS “(«) and 2K (o) have been studied by Aouf and Silverman [3], Pomerenke
[12], Clunie [6], Kaczmarski [9], Royster [13], Juneja and Reddy [8], Mogra [11] and others.

A function f of the form (1.1) is said to be in the class U XS “(«, ) of meromorphic
uniformly g -starlike functions of order « if it satisfies the condition:

zf '(z) zf '(z)
—Re{ @) +a}>ﬂ

f @)

Also a functionf of the form (1.1) is said to be in the class U 2K («, ) of meromorphic

+4(z eU;0<a<14>0). (1.4)
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uniformly g -convex functions of order « if it satisfies the condition:

zf "(z) zf "(z) ] )
_Re{1+ ) +a}>,8 2+ Q) (z €eU;0<a<1520). (1.5)
It follows from (1.4) and (1.5) that
f eUZK (a,pB) = -zf 'eU XS (a, ). (1.6)

The classes U XS “(a, #) and U =K (a, ) have been studied by Aouf et al. [1], Atshan and

Kulkarni [4], and others.
We note that:

(i) UZS"(,0)=S () and UZK(«,0)=K, ()
[see Aouf and Silverman [3], with n =1];
(i) UES*(,0) =%, S (a,7)and UK (,0) =% K (a,y) [also see EI-Ashwah et
al. [7], with n=p =y =1].

From [1, Theorem 1, withA=0and g(z)= Z(lﬁz)] we can obtain the following coefficients

inquality, for the class U 2S*(«, f).
Lemma 1 [1]. Let the function f defined by (1.1). Then f €U XS")if and only if

ST+ f)+ o+ A3, <(1-a). an

From (1.6) and (1.7) we can obtain the following lemma.
Lemma 2. Let the function f defined by (1.1). Then f €U =K (&, B)if and only if

SKIK @A+ 8)+(a+f)a, <1-a). (1.8)

Remark 1.
(i) Putting B=0in Lemma 1, we obtain the result obtained by Aouf and
Silverman [3, Lemma 1, with n =1];

(ii ) Putting #=0 inLemmal , we obtain the result obtained by El-Ashwah
etal. [7, Lemmal, with n=p=y =1];
(iii) Putting B =0 inLemma 2, we obtain the result obtained by Aouf and
Silverman [3, Lemma 2, with n =1];
(vi ) Putting £ =0in Lemma 2, we obtain the result obtained by El-Ashwah et al.
[7, Lemma 2, with n=p=y=1].
For the functions

fj(z)=zl+iak,jz"(ak‘j20;j =1,2). (1.9)
k=1
We denote by (f,*f,)(z)the Hadamard product (or convolution) of functions f,(z) and

#H#190%



Rawafed Al-Marefa. VVol. 5. 2022 Generalizations of Hadamard Products
of Certain Meromorphic Uniformly Univalent Functions with Positive Coefficients

f,(z), thatis
1 0
(fl*fz)(z)=2—+Zakvlak]zzk. (1.10)
k=1

For any real numberr and s, we define the generalized Hadamard product (flAfz)(r,s;z )
by [see Aouf and Silverman [3]]

1 i r s
(flAfz)(r,s;z):Z—+Z(akyl) (a.) z*. (1.11)
k=1
Note that, if we take r =s =1, then we have
(f,Af,)(LLz)=(f,*f,)(z)(z €U ).
Further for functions f,(z)(j =1,2) are given by (1.9), the familiar Holder inequality
assumes the following form (see [10,14]).

Z(Hak lj<1_[(z(akJ Jsj (5;2Lj=12..m isiz (1.12)

k=1\_j=1 =1 \ k=1 j=19j

2. Main Results

Theorem 1. If the functions f (i =1,2)defined by (1.9) are in the classes U XS (a;,B)
foreach j ,then

(F Af )G et jeUZS EB)(r >1),

and

(k +D)(1+ p5)

<1_—
‘f = 1_|_[k(1+,3)+(oe1+ﬂ)]%[k(1+ﬁ)+(012+ﬂ)]r7‘l T (21

1—0{1 1_0.’2
Proof. Since f;(z) eUZS (¢ ,ﬁ)(j =1,2), by using Lemma 1, we have

2 [k @+ B)+(a; + Bla .
> ia) <1(j =12). (2.2)

k=1

Moreover,

{ o [k (L+ ) + (a4 + B)lay }* o

kz_ (1—0(1) (2.3)
o [k (L+ B)+(cp + By, |
e B
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By using Holder inequality, we get
0 1 r-1 1 r-1
[k A+8)+ (o +B)] | | [k (@+B)+(ap+B)] | " r T
kZ{[ g | [ }(ak,l) (82)" <1 s
Since

(f.Af )(1 = j——+2(ak1) (8c2) " 2" (2.6)

rr
Therefore, we need to find the largest &,such that,

Z”: [k 1+ B)+ (S + B)] (ak ’1)% (ak ’2)21 <1

— (1_5) (2.7
that is
1 r-
[k @A)+ | [KA+S)+(n+f)] |7 | [k A+S)+(ap+h)] | *
(1-¢) = (1-e) (I~a,) 1 (2.8)
which implies
£< (k +D)(Q+ )
= K@ B) (gt f) 1o rk T )+ (apt P12 (2.9)
1+[ (+ﬁi):;(l +ﬁ)] [ (+ﬁ1)_J;fzz+ﬂ)]
This completes the proof of Theorem 1.

Remark 2.
(i) Putting 8 =0in Theorem 1, we obtain the result obtained by Aouf and

Silverman [3, Theorem 1, with n =1];
(ii) Putting B=0in Theorem 1, we obtain the result obtained by EI-Ashwah et
al. [7, Theorem 1, with n=p=y=1] .
Corollary 1. If the functions f; (z )(j =1,2)defined by (1.9) are in the class U XS (a, /),

then (f Af )G rTl Z]eU S (a, A)(r >1).

Proof. In view of Lemma 1, Corollary 1 follows immediately from Theorem 1 by taking
a =a(j=12).
Theorem 2. Let the functions f,(z)(j =12) defined by (1.9) are in the classes
1r-1

USK (a;,B)foreach j,then (fAf )(F — j UK (&, 8),

where r >1and & is defined by (2.1).
Proof. Since f,(z)eU 2K (o;,8)(j =1,2), by using Lemma 2, we get
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= K[k @+ B)+(a; +B)] )
Z (1—0{1-() ) a, ;<1 (j=12). (2.10)

k=1

Thus, the proof of Theorem 2 is similar to that of Theorem 1, where Lemma 2 is used instead
of Lemma 1.

Remark 3.
(1) Putting S =0in Theorem 2, we obtain the result obtained by Aouf and Silverman

[3, Theorem 2, with n =1];

(ii) Putting g =0in Theorem 2, we obtain the result obtained by El-Ashwah et al. [7,
Theorem 2, with n=p=y=1] .

Corollary 2. Let the functions f (z )(j =1,2)defined by (1.9) are inthe class U 2K (a, j)

, then
1r-1
(flAfz)(F,T;zjeUZK (@.B) (r>1)
Theorem 3. Let the functions f;(z)(j =12,...m)defined by (1.9) be in the classes
UZS*(q;,B)foreach j,and letthe function F, (z )defined by

F (z)=;+i(i(ak'j)’]zk (zeU™ir=2). (2.11)

k=1\_j=1

Then F,(z)eUZS"(&,. ), where

2m(B+1)(1-a)'

- (1—a) +(+a+28)" (2.12)
a =]gj1i<rr1n{aj b (2.13)
and _
(l+a+2B8) >m(1+2B8)(1-«a) . (2.14)
Proof. Since f;(z)eUXS (a;, ), using Lemma 1, we obtain
g[k (1+ﬂ)(:_(2;ﬂ)]a“ <1 (j=12..m) (2.15)

and

[k @B) (e + )] i [k @ B)+(e; +Play |
Z{ o) } @ ;) S{Z o) } <L (2.16)

k=1 k=1
It follows from (2.16) that
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- 1 l +8)+(a; + ' r
SLS[eenn] @ yla .

k= | M=
By virtue of (2.17), we find that

kZ([k (1+é)+§(§)m+ﬁ)])(2(ak ) J<Z 1 |:[k (1+ﬂl)_4;()a+,13)]:| [Zl(ak,j )r]

Siiz[w} (8 ) <1 (2.18)
k=L j-1 (1) '
which implies that
eoeq MK H)(p+Y(A-a) (k >1). (2.19)
m(1-a) +[k @+ B)+(a+p)]
Now let
g (k)=-1- m(kr+1)(ﬂ+l)(l—a)r | 2.20
m(l-a) +[k @+ B)+(@+ B
Then
g'(k)={m(1-a) +Ik @+ B)+(k + AT }(-m (1-a) (8+1)).

m@-a) K@+ p) @+ AT
+m (1-a) 1+ B) (k +1){r (B+1)[(k L+ B) +(ar+ B)I .

m-a) K@+ p) @ T
=m(1-a) @+ Bk @+ B)+a+ Bl {-[k @+ B)+(a+ B)]+r 1+ ) (k +1)}.
K@) ra+ AT (L-a) + KA+ f) +a+ AT |

-m?(1-a)" @+ Bk @+ p) +a + LIk A+ ) +a+ BT
Am@-a) 4 k@B + @+ AT

_AK)

B(k)’

where

AK)=m (1—0{)r A+ Bk A+ B)+a+ Bl {1k @+ B) +(a + B)]
+r(+ ) (k +1)}-m?(1- ) L+ Bk@+B)+a+ L] (k=1

and using (2.13), then we have
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Ak)=m?(1-a)" (1+B){r (1+ B)(k +1)-2[k 1+ ) +a + B13>0

forall r>2,0<a<land B>0.Thenwehave g'(k)>0forall r>2,0<a<13>0 and
k >1.Hence

2m(p+1)(1-a)
m(l-a) +(@+a+28)

By (1+a+28) 2m(1+28)(1-«) ,we can see that 0<¢&, <1.Thus the proof of Theorem
3 is completed.
Remark 4.

Q) Putting £ =0in Theorem 3, we have the result obtained by Aouf and Silverman
[3, Theorem 3, with n=1 ],
(i) Putting g =0in Theorem 3, we obtain the result obtained by El-Ashwah et al.
[7, Theorem 3, with n=p=y=1] ;
(iii) Putting r =2and a; =a (j =1,2,..,m) in Theorem 3, we obtain the following
corollary.
Corollary 3. Let the functions f,(z)(j =12,..,m) defined by (1.9), be in the class

UZXS™(a,B) and let the function F_(z)be defined by

Fm(z):zi+i(i(ak’j)z}k (zeu?)

=1\ j=1

gmg_

Then F,(z)eUXS"(n,,)(z €U™) , where

2m (B+1)(1-a)
m(l-a) +@+a+28)"

=1 (2.21)

and
(1+a+28) >m(1+2p8)(1-a)’.
The result is sharp, the extremal functions are

1 (e
fj(z)—Z +(1+a+2ﬂ)z (j =12,..,m).

Taking m =2 in Corollary 3, we obtain the following corollary.
Corollary 4. Let the functions f, (z )(j =1,2)defined by (1.9), be intheclass UZS"(«, ) and
let the function F,(z ) defined by

1 & .
F(z)= Z—+Z(ak2’1+ak2’2)zk (zeU"). (2.22)
k=1
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Then F,(z)eUzS"(£,.B)(z €U”), where

4(+1)(1-a) 2.23)
2(1—0:)2 +(+a+2p)°

é'z:l—

and

(1+a+2p8) >2(1+28)(1-a)’. (2.24)

Remark 5.
Q) Putting S =0 in Corollary 4, we obtain the result obtained by Aouf and Silverman [3,

Corollary 4, n =1].
(i) Putting S =0 in Corollary 4, we obtain the result obtained by EIl-Ashwah et al.

[7, Corollary 4, with n=p =y =1].
Theorem 4. Let the functions f,(z)(j =12,...m) defined by (1.9), be in the classes

USK (a;,8) for each j , and let the function F, (z) defined by (2.11). Then
F.(z)eUZK (y,.8), where

2 (l-a)

m(p+1)(1-a) (2.25)

Vm <1- r
m(l-a) +Q+a+2p)
= min iyl
and
(+a+2B) 2m(1+28)(1-«a) . (2.26)
Proof. Since f; (z)eU =K (a;, ), using Lemma 2, we obtain
Kk ) (g, +ﬂ)]ak,j <1 (j=12). (2.27)

(1_aj)

k=1

Thus, the proof of Theorem 4 is similar to that of Theorem 3, where Lemma 2 is used instead

of Lemma 1.
By taking r =2and «; = a(j =12,..,m)in Theorem 4, we obtain the following corollary.

Corollary 5. Let the functions f,(z)(j=12,...,m) defined by (1.9) be in the class
UK («, ) and let the function F,(z) defined by
1 0 m
F.(z)==+ a ) |z" zeU"). 2.28
n(@)=> kz[z(mj (zeu”) (2.28)

=1\ j=1

Then F,(z)eUZK (¢, B), where
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2m(p+1)(1-a)

=1- , 2.29
on m (1—0:)2 +(l+a+2B) (2:29)
and
Q+a+2p8)?>m(1+28)(1-a). (2.30)

Taking m =2in Corollary 5, we obtain the following corollary.
Corollary 6. Let the functions f (z )(j =1,2)defined by (1.9) be in the class U 2K (a, j)

, Where « satisfies (2.24) and let the function F,(z) defined by (2.22). Then
F,(z)eU 3K (£, B)(z €U ™), where &, is defined by (2.23).
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