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Abstract 

In this paper, we obtained some results concerning the generalized Hadamard products of 

certian meromorphic uniformly starlike and convex functions with positive coefficients. 
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1. Introduction 

Let  denote the class of meromorphic functions of the form: 

 

                ( )
1

1 k

k

k

f z a z
z



=

= + , (1.1) 

which are analytic and univalent in the punctured unit disc  

 

 1 .: C and 0 zzU z  =  

A function ( )f z  is meromorhpically starlike of order if  

                  ( )
( )

;0 1 .Re
( )

zf z
z U

f z
  

 − 
 

 (1.2) 

We denote by ( )S  the class of all meromorphically starlike functions of order .   

A function ( )f z in  is said to be meromorphically convex of order  if  

                   ( )
( )

;0 1 .Re 1
( )

zf z
z U

f z
  

 − + 
 

 (1.3)      

And we denote by ( )K  the class of all meromorphically convex functions of 

order .   

The classes ( )S   and ( )K  have been studied by Aouf and Silverman [3], Pomerenke 

[12], Clunie [6], Kaczmarski [9], Royster [13], Juneja and Reddy [8], Mogra [11] and others. 

A function f of the form (1.1) is said to be in the class ( , )U S   of meromorphic 

uniformly  -starlike functions of order if it satisfies the condition: 

    ( )
( )( )

1 ;0 1; 0 .Re
( )( )

zf zzf z
z U

f zf z
  

 
+    + − 

 
 (1.4) 

Also a function f of the form (1.1) is said to be in the class ( , )U K   of meromorphic 
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uniformly  -convex functions of order if it satisfies the condition:  

  ( )
( )( )

2 ;0 1; 0 .Re 1
( ) ( )

zf zzf z
z U

f z f z
  

 
+    − + +  

  
 (1.5) 

It follows from (1.4) and (1.5) that 

              ( , ) ( , ).f U K zf U S      −    (1.6) 

The classes ( , )U S   and ( , )U K   have been studied by Aouf et al. [1], Atshan and 

Kulkarni [4], and others. 

We note that: 

(i) ( ,0) ( )nU S S   =   and ( ,0) ( )nU K K  =  

       [see Aouf and Silverman [3], with 1];n =   

(ii) ( ,0) ( , )p nU S S    =  and ( ,0) ( , )p nU K K   =   [also see El-Ashwah et 

       al. [7], with 1n p = = = ] .   

From [1, Theorem 1, with 0 = and 
( )

1

1
( )

z z
g z

−
= ] we can obtain the following coefficients 

inquality, for the class ( , ).U S     

Lemma 1 [1]. Let the function f defined by (1.1). Then )f U S   if and only if 

 

                    
1

[ (1 ) ( )] (1 ).k

k

k a   


=

+ + +  −  (1.7) 

From (1.6) and (1.7) we can obtain the following lemma. 

Lemma 2. Let the function f defined by (1.1). Then ( ),f U K    if and only if 

            ( )
1

[ (1 ) ] (1 ).k

k

k k a   


=

+ + +  −  (1.8)                         

Remark 1. 

 ( )i   Putting 0 = in Lemma 1 , we obtain the result obtained by Aouf and 

         Silverman [3, Lemma 1, with 1];n =   

 ( )ii   Putting 0 =  in Lemma 1 ,   we obtain the result obtained by El-Ashwah  

         et al. [7, Lemma 1, with  𝑛 = 𝑝 = 𝛾 = 1];  

 ( )iii   Putting  𝛽 = 0  in Lemma 2, we obtain the result obtained by Aouf and 

         Silverman [3, Lemma 2, with  1];n =   

 ( )vi   Putting 0 = in Lemma 2, we obtain the result obtained by El-Ashwah et al. 

          [7, Lemma 2, with  1].n p = = =   

For the functions  

            ( ) ( ), ,

1

1
1,2 .0;k

k jk jj

k

f z a z a j
z



=

= +  =  (1.9) 

We denote by ( ) ( )1 2f f z the Hadamard product (or convolution) of functions ( )1f z   and 
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( )2f z , that is 

             ( )( )1 2 ,1 ,2

1

1
.k

k k

k

f f z a a z
z



=

 = +  (1.10) 

For any real number r and s , we define the generalized Hadamard product  ( )( )1 2 , ;f f r s z

by [see Aouf and Silverman [3]] 

             ( )( ) ( ) ( ),21 2 ,1

1

1
., ;

sr
k

kk

k

zf f r s z a a
z



=

 = +  (1.11)           

Note that, if we take 1r s= = , then we have 

( )( ) ( )( )( )1 2 1 21,1; .f f z f f z z U  =    

Further for functions ( )( 1,2)jf z j =  are given by (1.9), the familiar Hölder inequality 

assumes the following form (see [10,14]). 

 

  

1

, ,

1 1 1 1 1

1
1).;1,2,...,1;)  ((

s j

j

mmm
s

k j k j j

k j j k j j

ms jaa
s



= = = = =

   
 = 

  
    (1.12) 

 

2. Main Results 

Theorem 1. If the functions ( )1,2jf j = defined by (1.9) are in the classes  ( , )jU S    , 

for each j , then 

( ) ( )1 2

1 1
, ; ( , ) 1 ,
r

U S rzf f
r r

 − 
    

 
 

and 

                11
21

21

(1 ) ( )(1 ) ( )

11

( 1)(1 )
1 .

]] [1 [
r

r rk k

k
    

 




−++ + + + +

− −

+ +
 −

+  (2.1) 

Proof. Since ( )( ) ( , ) 1,2 ,j jf z U S j   = by using Lemma 1, we have 

                  
( )

( ),

1

[ (1 ) ( )]
1 1,2 .

1

j k j

k j

k a
j

  





=

+ + +
 =

−
  (2.2) 

Moreover, 

                  ( )

1

1 ,1

1 1

[ (1 ) ( )]
1,

1

r

k

k

k a  





=

 + + + 


−  
  (2.3) 

                 ( )

1

2 ,2

1 2

[ (1 ) ( )]
1.

1

r
r

k

k

k a  



−



=

 + + + 


−  
  (2.4) 
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By using Holder inequality, we get 

      ( ) ( ) ( ) ( )
1 1 1 1

1 2

1 2

[ (1 ) ( )] [ (1 ) ( )]

,1 ,21 1
1

1.
r r

r r r rk k

k k

k

a a
     

 

− −
+ + + + + +

− −
=

          
  (2.5) 

Since 

           ( ) ( ) ( )
1 1

1 2 ,1 ,2

1

1 1 1
, ; .

r
r r k

k k

k

r
zaazf f

zr r

−

=

− 
 = + 

 
  (2.6) 

Therefore, we need to find the largest , such that,  

            
( )

( ) ( )
1 1

,1 ,2

1

[ (1 ) ( )]
1,

1

r
r r

k k

k

k
a a

  



−

=

+ + +


−
  (2.7) 

that is 

        ( ) ( ) ( )

11

1 2

1 2

[ (1 ) ( )] [ (1 ) ( )][ (1 ) ( )]

1 1 1
,

r
rr kkk     



−

+ + + + + ++ + +

− − −
   
     (2.8) 

which implies 

             11
21

21

(1 ) ( )(1 ) ( )

11

( 1)(1 )
1 .

]] [1 [
r

r rk k

k
    

 




−++ + + + +

− −

+ +
 −

+
 (2.9) 

This completes the proof of Theorem 1. 

Remark 2. 

 ( )i   Putting 0 = in Theorem 1, we obtain the result obtained by Aouf and 

          Silverman [3, Theorem 1, with 1];n =   

 ( )ii   Putting 0 = in Theorem 1, we obtain the result obtained by El-Ashwah et 

          al. [7, Theorem 1, with  1]n p = = =  . 

Corollary 1. If the functions ( )( )1,2jf z j = defined by (1.9) are in the class  ( , )U S   , 

then ( )1 2

1 1
, ; ( , )( 1).
r

rU Szf f
r r

 − 
    


 

Proof. In view of Lemma 1, Corollary 1 follows immediately from Theorem 1 by taking

( )1,2 .j j = =   

Theorem 2. Let the functions ( )( )1,2jf z j = defined by (1.9) are in the classes  

( ),jU K   for each j , then ( ) ( )1 2

11
,,;,

r
U Kzf f

r r
 

− 
  

 
 

where 1r  and   is defined by (2.1). 

Proof. Since ( ) ( )( ), 1, 2 ,j jf z U K j   =  by using Lemma 2, we get 
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( )

( ),

1

[ (1 ) ]
1    1,2 .

(1 )

j

k j

k j

k k
a j

  





=

+ + +
 =

−
  (2.10) 

Thus, the proof of Theorem 2 is similar to that of Theorem 1, where Lemma 2 is used instead 

of Lemma 1. 

 

Remark 3. 

(i) Putting 0 = in Theorem 2, we obtain the result obtained by Aouf and Silverman 

 [3, Theorem 2, with 1];n =   

(ii) Putting 0 = in Theorem 2, we obtain the result obtained by El-Ashwah et al. [7, 

 Theorem 2, with  1]n p = = =  . 

Corollary 2. Let the functions ( )( )1,2jf z j = defined by (1.9) are in the class  ( ),U K  

, then 

( ) ( ) ( )1 2

11
, ; ,   1 .
r

rU Kzf f
r r

 
− 

    


 

Theorem 3. Let the functions ( )( )1,2,...jf z j m= defined by (1.9) be in the classes  

( , )jU S   for each j , and let the function ( )mF z defined by 

         ( ) ( ),

1 1

1
; 2 .)(

m
kr

k jm

k j

z U rzF z a
z




= =


 = + 

 
   (2.11) 

Then ( ) ( , )m mF z U S    , where 

              
( )( )

( )

2 1 1
1 ,

1 (1 2 )

r

m r r

m

m

 


 

+ −
 −

+ +− +
 (2.12) 

                  
1
min ,j

j m
 

 
=  (2.13) 

and 

                 ( ) ( )( )1 2 1 2 1 .
r r

m   + +  + −  (2.14) 

Proof. Since ( ) ( , )j jf z U S    , using Lemma 1, we obtain 

             
( )

,

1

[ (1 ) ( )]
1     ( 1,2,..., )

1

j k j

k j

k a
j m

  





=

+ + +
 =

−
  (2.15) 

and 

      ( )  ( )
,[ (1 ) ( )][ (1 ) ( )]

,1 1
11

( ) 1.j k jj

j j

rr
k ak r

k j

kk

a
    

 

 
+ + ++ + +

− −
==


  


   (2.16) 

It follows from (2.16) that 
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     ( )

[ (1 ) ( )]

,1
11

1
( ) 1.j

j

rm
k r

k j

jk

a
m

  




+ + +

−
==

        
   (2.17) 

By virtue of (2.17), we find that 

     ( )( ) ( )

[ (1 ) ( )] [ (1 ) ( )]1
, ,1 1

1111

( ) ( )m

m

m mr
k kr r

k jk j m

jkjk

a a
     



 
+ + + + + +

−−
====

   
     


                    

                                         

( )

)][ (1 ) (1
,1

11

1,( )j

j

rm
k r

k jm

jk

a
  




+ + +

−
==

  
 

   (2.18) 

which implies that 

              
( )( )( )

( )
( )

1 1 1
1 ,   1 .

1 [ (1 ) ( )]

r

m r r

m k
k

m k

 


   

+ + −
 − 

− + + + +
 (2.19) 

Now let 

         ( )
( )( )( )

( )

1 1 1
1  .

1 [ (1 ) ( )]

r

r r

m k
g k

m k

 

   

+ + −
= −

− + + + +
 (2.20) 

Then 

 ( ) ( )  ( ) ( )( )1 [ (1 ) ( )] 1 1 .
r rrg k m k k m     = − + + + + − − +   

. ( ) 
2

1 [ (1 ) ( )]
r rm k   

−

− + + + +   

 ( ) ( ) ( ) ( )( ) 11 (1 ) 1 1 [ (1 ) ] .
r rm k r k      −+ − + + + + + +   

. ( ) 
2

1 [ (1 ) ( )]
r rm k   

−

− + + + +   

 ( ) ( ) ( ) 1 (1 )[ (1 ) ] [ (1 ) ] (1 ) 1 .
r rm k k r k        = − + + + + − + + + + + +   

. ( ) 
2

1[ (1 ) ] 1 [ (1 ) ( )]
r rk m k      

−
−+ + + − + + + +   

 ( )
22 11 (1 )[ (1 ) ].[ (1 ) ] .

r
kkm      −+ + ++ + ++−−   

. ( ) 
2

1 [ (1 ) ( )]
r rm k   

−

− + + + +   

 
( )

,
( )

A k

B k
=   

where 

 ( ) ( )])] { [ (1))[ (1(11( )
r rk kA k m       + + ++ + + + −−=   

 ( ) ( )2 ]1 (1 )[ (1 )(1 ) 1 }
r

kr k m     + + +++ + + − −    ( 1)k    

and using (2.13), then we have 
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 ( ) ( ) ( )( )
22 ]} 0)2[ (11{ 111( )

r
A k m r k k     = − + + + − + + +    

for all 2,0 1r    and 0.  Then we have ( ) 0g k  for all 2,0 1, 0r        and 

1.k  Hence 

                 

( )( )

( )

2 1 1
1 .

1 (1 2 )

r

m r r

m

m

 


  

+ −
 −

− + + +
  

By ( ) ( )( )1 2 1 2 1 ,
r r

m   + +  + − we can see that 0 1.m  Thus the proof of Theorem 

3 is completed. 

Remark 4. 

(i) Putting 0 = in Theorem 3, we have the result obtained by Aouf and Silverman  

[3, Theorem 3, with  1n =  ]; 

(ii) Putting 0 = in Theorem 3, we obtain the result obtained by El-Ashwah et al.  

[7, Theorem 3, with  1]n p = = =  ; 

   (iii) Putting 2r = and 
j =  ( 1,2,..., )j m=  in Theorem 3, we obtain the following 

     corollary. 

Corollary 3. Let the functions ( )( ) 1,2,...,jf z j m= defined by (1.9), be in the class  

( , )U S     and let the function ( )mF z be defined by 

( )2

,

1 1

1
)(( )

m
k

k jm

k j

z UzaF z
z




= =


+= 

 
   

Then ( ) ( , )( )m mF z U S z U      , where 

( )( )

( )

2

2 2

2 1 1
1 ,

1 (1 2 )
m

m

m

 


  

+ −
= −

+++−
 (2.21) 

 

and 

( ) ( )( )
2 2

1 2 1 2 1 .m   + +  + −  

The result is sharp, the extremal functions are  

( )
( )

11
1,2,..., .( )

2 )(1
j mz jf z

z



 

−
= + =

+ +
 

Taking  2m =   in Corollary 3, we obtain the following corollary. 

Corollary 4. Let the functions ( )( ) 1,2jf z j = defined by (1.9), be in the class  ( , )U S    and 

let the function 2 ( )F z defined by 

 

( )2 2

,2,12

1

1
.)(( ) k

k k

k

z Uza aF z
z




=

+ +=   (2.22) 
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Then ( )2 2( ) ( , ) ,F z U S z U      where 

( )( )

( )

2

2 2 2

4 1 1
1 ,

2 1 (1 2 )

 


  

+ −
= −

− + + +
 (2.23) 

and 

( ) ( )( )
2 2

1 2 2 1 2 1 .   + +  + −  (2.24) 

 

Remark 5. 

(i) Putting 0 =  in Corollary 4, we obtain the result obtained by Aouf and Silverman [3, 

Corollary 4, 1].n =   

(ii) Putting 0 =  in Corollary 4, we obtain the result obtained by El-Ashwah et al. 

[7, Corollary 4, with 1].n p = = =   

Theorem 4. Let the functions ( )( )1,2,...,jf z j m=  defined by (1.9), be in the classes 

( ),jU K    for each j , and let the function ( )mF z defined by (2.11). Then  

( ) ( ), ,m mF z U K     where 

( )( )

( )

2 1 1
1   ,

1 (1 2 )

r

m r r

m

m

 


 

+ −
 −

+ +− +
 (2.25) 

𝛼 = 𝑚𝑖𝑛
1≤𝑗≤𝑚

{𝛼𝑗} 

and 

( )( )(1 2 ) 1 2 1 .
rr m   + +  + −  (2.26) 

 

Proof. Since ( ) ( ), ,j jf z U K     using Lemma 2, we obtain 

( )
( ),

1

[ (1 ) ]
1       1,2 .

(1 )

j

k j

k j

k k
a j

  





=

+ + +
 =

−
  (2.27) 

 

Thus, the proof of Theorem 4 is similar to that of Theorem 3, where Lemma 2 is used instead 

of Lemma 1. 

By taking 2r = and ( )1,2,...,j j m = = in Theorem 4, we obtain the following corollary. 

Corollary 5. Let the functions ( )( )1,2,...,jf z j m=  defined by (1.9) be in the class  

( ),U K    and let the function ( )mF z  defined by 

( )2

,

1 1

1
.)(( )

m
k

k jm

k j

z UzF z a
z




= =


= + 


   (2.28) 

Then ( )( ) , ,m mF z U K     where 
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( )( )

( )

2

2 2

2 1 1
1 ,

1 (1 2 )
m

m

m

 


  

+ −
= −

− + + +
  (2.29) 

and 

( )( )
22(1 2 ) 1 2 1 .m   + +  + −  (2.30) 

Taking 2m = in Corollary 5, we obtain the following corollary.  

Corollary 6. Let the functions ( )( )1,2jf z j = defined by (1.9) be in the class  ( ),U K  

, where   satisfies (2.24) and let the function 2 ( )F z defined by (2.22). Then 

( )( )2 2( ) , ,F z U K z U      where 2 is defined by (2.23). 

---------------------------------------------------------------------------------------------------------------- 
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