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Abstract

In this article, we apply the generalized (G0=G)-expansion method with the aid of com-
puter algebra systems (CAS) such as Maple or Mathematica to construct many new types
of Jacobi elliptic function solutions for two nonlinear partial di¤erential equations (PDEs)
describing the nonlinear low-pass electrical lines and pulse narrowing nonlinear transmission
lines. Based on Kirchho¤�s law, the given nonlinear PDEs have been derived and can be
reduced to nonlinear ordinary di¤erential equations (ODEs) using a simple transformation.
Soliton wave solutions or periodic function solutions are obtained from the Jacobi elliptic
function solutions when the modulus of the Jacobi elliptic functions approaches to one or
zero respectively. Comparing our new results with the well-known results are given. The
used method in this article is straightforward, concise and it can also be applied to other
nonlinear PDEs in mathematical physics.

Keywords: Generalized (G0=G)-expansion method; Exact solutions; Nonlinear low-pass electrical
lines; Pulse narrowing nonlinear transmission lines.
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1. Introduction

24], the (G
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The objective of this article is to use the generalized
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�

(I) The nonlinear PDE governing wave propagation in nonlinear low-passe lectrical transmission
lines [23,32]:
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where E(x; t) is the voltage of the pulse and C0, L, � and b1 are constants. The physical details of
the derivation of Eq. (1.2) is elaborated in [34] using the Kirchho¤�s current law and Kirchho¤�s
voltage law, which are omitted here for simplicity. Eq. (1.2) has been discussed in [24] using a
new Jacobi elliptic function expansion method and its exact solutions have been found.
This article is organized as follows: In Sec. 2, the description of the generalized

�
G0

G

�
-expansion

method is given. In Sec. 3, we use the given method described in Sec. 2, to �nd exact solutions

In the recent years, investigations of exact solutions to nonlinear PDEs play an important role
in the study of nonlinear physical phenomena in such as �uid mechanics, hydrodynamics, optics,
plasma physics, solid state physics, biology and so on. Several methods for �nding the exact
solutions to nonlinear equations in mathematical physics have been presented, such as the inverse
scattering method [1], the Hirota bilinear transform method [2], the (G0=G)-expansion method [3-
6], the generalized (G0=G)-expansion method [7-9], the new mapping method [10-12], the Bäcklund
transform method [13-15], the generalized projective Riccati equations method [16-18], the Jacobi
elliptic function expansion method [19-21], the new Jacobi elliptic function expansion method [22-

G
; 1
G
)-expansion method [24-29], the extended auxiliary equation method [30,31] and so

-expansion method to construct many
exact solutions including Jacobi elliptic function solutions and solitons wave solutions of the fol-
lowing nonlinear PDEs:

where �, � and � are constants, while V (x; t) is the voltage in the transmission lines. The variable
x is interpreted as the propagation distance and t is the slow time. The physical details of the
derivation of Eq. (1.1) using the Kirchho¤�s laws given in [32], which are omitted here for simplicity.
Note that Eq. (1.1) has been discussed in [32] using an auxiliary equation method listed in [33]
and its exact solutions have been found. Also, Eq. (1.1) has been discussed in [23] using a new
Jacobi elliptic function expansion method.
(II) The nonlinear PDE describing pulse narrowing nonlinear transmission lines [24]:
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of Eqs. (1.1) and (1.2). In Sec. 4, physical explanations of some results are presented. In Sec. 5,
some conclusions are obtained.

2. Description of the generalized
�
G0
G

�
-expansion method

Consider a nonlinear PDE in the form:

P (V; Vx; Vt; Vxx; Vtt; :::) = 0; (2.1)

�
G0

G

�
-expansion method [7-9]:

Step 1. We look for the voltage V (x; t) in the traveling form:

V (x; t) = V (�); � =
p
k(x� !t); (2.2)

where k and ! are undetermined positive parameters, and ! is the velocity of propagation, to
reduce Eq. (2.1) to the following nonlinear ODE:

H(V; V 0; V 00; :::) = 0; (2.3)

where H is a polynomial of V (�) and its total derivatives V 0(�); V 00(�); ::: and 0 =
d

d�
.

Step 2. We assume that the solution of Eq. (2.3) has the form:

V (�) =
NP
i=0

ai

�
G0

G

�i
; (2.4)

where ai (i = 1; 2; :::; N) are constants to be determined later, provided aN 6= 0; and G = G(�)
satis�es the following Jacobi elliptic equation

G02(�) = R +QG2(�) + PG4(�); (2.5)

where R; Q and P are constants:
Step 3. We determine the positive integer N in (2.4) by balancing the highest-order derivatives
and the highest nonlinear terms in Eq. (2.3).

Step 4. Substituting (2.4) along with Eqs. (2.5) into Eq. (2.3) and collecting all the coe¢ -

cients of
�
G0(�)
G(�)

�i
(i = 0; 1; 2; :::), then setting these coe¢ cients to zero, yield a set of algebraic

equations, which can be solved by using the CAS to �nd the values of ai ; R; Q and P .

where V = V (x; t) is a unknown function, P is a polynomial in V (x; t) and its partial derivatives
in which the highest order derivatives and nonlinear terms are involved. Let us now give the main
steps of the generalized
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Step 5. It is well-known that Eqs. (2.5) have many families of solutions listed in [7-9].

Step 6. Substituting the values of ai , R; Q and P as well as the solutions of Step 5, into
(2.4) we have the exact solutions of Eq. (2.1).

3. Applications

In this section, we apply the generalized
�
G0

G

�
-expansion method of Sec. 2 to �nd new exact

solutions of Eqs. (1.1) and (1.2) in the following subsections:

3.1. Exact wave solutions of Eq. (1.1) using the method of Sec. 2

In order to solve Eq. (1.1), we use the transformation (2.2) to reduce Eq. (1.1) to the following
nonlinear ODE:

d2

d�2

�
k2�4

12

d2V

d�2
+ (k�2 � k!2)V + �k!2V 2 � �k!2V 3

�
= 0: (3.1.1)

Integrating Eq. (3.1.1) twice and vanishing the constants of integration, we �nd the following ODE:

K2

12

d2V

d�2
+ (K � U)V + �UV 2 � �UV 3 = 0: (3.1.2)

where K = k�2 and U = k!2:
Balancing d2V

d�2
with V 3 gives N = 1. Therefore, (2.4) reduces to

V (�) = a0 + a1

�
G0(�)

G(�)

�
; (3.1.3)

where a0 and a1 are constants to be determined provided that a1 6= 0.
Now, substituting (3.1.3) along with the Jacobi elliptic equation (2.5) into Eq. (3.1.2) and collect-

ing all the coe¢ cients of
�
G0(�)
G(�)

�i
; (i = 0; 1; 2; 3) and setting them to be zero, we have the following

algebraic equations:�
G0(�)
G(�)

�3
: 1
6
K2a1 � � Ua31 = 0;�

G0(�)
G(�)

�2
: �3 � Ua0a21 + �Ua21 = 0;�

G0(�)
G(�)

�
: �1
6
K2a1Q+ (K � U) a1 + 2�Ua0a1 � 3 � Ua20a1 = 0;�

G0(�)
G(�)

�0
: (K � U) a0+�Ua20�� Ua30 = 0: (3.1.4)
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On solving the above algebraic equations (3.1.4) using the CAS, we have the following result:

K = � 6�2

Q(2�2 � 9�) ; U =
54�2�

Q(2�2 � 9�)2 ; a0 =
�

3�
; a1 = �

�

3�
p
Q
; P = P ; R = R ;

(3.1.5)

where Q > 0:

Substituting (3.1.5) into (3.1.3) yields

V (�) =
�

3�

�
1� 1p

Q

�
G0(�)

G(�)

��
; (3.1.6)

where � =
q
� 6�2

Q(2�2�9�)�2x�
q

54�2�
Q(2�2�9�)2 t, 2�

2 < 9�, � > 0.

With reference to solving Eq. (2.5), we deduce that the Jacobi elliptic function solutions and
other exact solutions of Eq. (1.1) as follows:

Case 1. Choosing P = �m2; Q = 2m2 � 1; R = 1 � m2 and G(�) = cn(�), we obtain the
Jacobi elliptic function solutions

V (�) =
�

3�

�
1� sc(�) dn(�)p

2m2 � 1

�
; (3.1.7)

where � =
q
� 6�2

(2m2�1)(2�2�9�)�2x�
q

54�2�
(2m2�1)(2�2�9�)2 t.

If m! 1, then Eq. (1.1) has the kink soliton wave solutions

V (�) =
�

3�
[1� tanh(�)] (3.1.8)

where � =
q
� 6�2

(2�2�9�)�2x�
q

54�2�
(2�2�9�)2 t.

Case 2. Choosing P = �1; Q = 2 � m2; R = m2 � 1 and G(�) = dn(�), we obtain the Jacobi
elliptic function solutions

V (�) =
�

3�

�
1� ds(�)p

2�m2 cn(�)

�
; (3.1.9)

where � =
q
� 6�2

(2�m2)(2�2�9�)�2x�
q

54�2�
(2�m2)(2�2�9�)2 t.

If m! 1, then we have the same kink soliton wave solutions Eq. (3.1.8).

Case 3. Choosing P = 1 � m2; Q = 2 � m2; R = 1 and G(�) = sc(�), we obtain the Jacobi
elliptic function solutions

V (�) =
�

3�

�
1� ds(�)

cn(�)
p
2�m2

�
; (3.1.10)
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where � =
q
� 6�2

(2�m2)(2�2�9�)�2x�
q

54�2�
(2�m2)(2�2�9�)2 t.

If m! 0, then Eq. (1.1) has the exact wave solutions

V (�) =
�

3�

�
1� sec(�) csc(�)p

2

�
; (3.1.11)

where � =
q
� 3�2

(2�2�9�)�2x�
q

27�2�
(2�2�9�)2 t.

If m! 1, then Eq. (1.1) has the anti-kink soliton wave solutions

V (�) =
�

3�
[1� coth(�)] ; (3.1.12)

where � =
q
� 6�2

(2�2�9�)�2x�
q

54�2�
(2�2�9�)2 t.

Case 4. Choosing P = 1
4
; Q = 1�2m2

2
; R = 1

4
and G(�) = ns(�) � cs(�), we obtain the Jacobi

elliptic function solutions

V (�) =
�

3�

"
1�

p
2 ds(�)p
1� 2m2

#
; (3.1.13)

where � =
q
� 12�2

(1�2m2)(2�2�9�)�2x�
q

108�2�
(1�2m2)(2�2�9�)2 t.

If m! 0, then Eq. (1.1) has the exact wave solutions

V (�) =
�

3�
[1�

p
2 csc(�)]; (3.1.14)

where � =
q
� 12�2

(2�2�9�)�2x�
q

108�2�
(2�2�9�)2 t.

Case 5. Choosing P = 1 � m2; Q = 2 � m2; R = 1 and G(�) = cs(�), we obtain the Jacobi
elliptic function solutions

V (�) =
�

3�

�
1� nc(�) ds(�)p

2�m2

�
; (3.1.15)

where � =
q
� 6�2

(2�m2)(2�2�9�)�2x�
q

54�2�
(2�m2)(2�2�9�)2 t.

If m! 0, then we have the same exact solutions (3.1.11).
If m! 1, then we have the same anti-kink soliton wave solutions (3.1.12).
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Case 6. Choosing P = m2(m2 � 1); Q = 2m2 � 1; R = 1 and G(�) = ds(�), we obtain the
Jacobi elliptic function solutions

V (�) =
�

3�

�
1� cd(�) ns(�)p

2m2 � 1

�
; (3.1.16)

where � =
q
� 6�2

(2m2�1)(2�2�9�)�2x�
q

54�2�
(2m2�1)(2�2�9�)2 t.

If m! 1, then we have the same ant-kink soliton wave solutions (3.1.12).

Case 7. Choosing P = m2 � 1; Q = 2 � m2; R = �1 and G(�) = nd(�), we obtain the Ja-
cobi elliptic function solutions

V (�) =
�

3�

�
1� m

2 cd(�) sd(�) dn(�)p
2�m2

�
; (3.1.17)

where � =
q
� 6�2

(2�m2)(2�2�9�)�2x�
q

54�2�
(2�m2)(2�2�9�)2 t.

If m! 1, then we have the same kink soliton wave solutions (3.1.8).

Case 8. Choosing P = m2�1
4
; Q = m2+1

2
; R = m2�1

4
and G(�) = m sd(�) � nd(�), we obtain the

Jacobi elliptic function solutions

V (�) =
�

3�

"
1� m

p
2 cd(�)p
1 +m2

#
; (3.1.18)

where � =
q
� 12�2

(1+m2)(2�2�9�)�2x�
q

108�2�
(1+m2)(2�2�9�)2 t.

If m! 1, then we have the trivel solution.

Case 9. Choosing P = 1
4
; Q = 1�2m2

2
; R = 1

4
and G(�) = ns(�) � cs(�), we obtain the Jacobi

elliptic function solutions

V (�) =
�

3�

"
1�

p
2 ds(�)p
1� 2m2

#
; (3.1.19)

where � =
q
� 12�2

(1�2m2)(2�2�9�)�2x�
q

108�2�
(1�2m2)(2�2�9�)2 t.

If m! 0, then we have the same exact wave solutions (3.1.14).
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Case 10. Choosing P = 1�m2

4
; Q = m2+1

2
; R = 1�m2

4
and G(�) = nc(�) � sc(�), we obtain

the Jacobi elliptic function solutions

V (�) =
�

3�

"
1�

p
2 dc(�)p
m2 + 1

#
; (3.1.20)

where � =
q
� 12�2

(m2+1)(2�2�9�)�2x�
q

108�2�
(m2+1)(2�2�9�)2 t.

If m! 0, then Eq. (1.1) has the exact wave solutions

V (�) =
�

3�
[1�

p
2 sec(�)]; (3.1.21)

where � =
q
� 12�2

(2�2�9�)�2x�
q

108�2�
(2�2�9�)2 t.

If m! 1, then we have the trivel solution.

Case 11. Choosing P = 1
4
; Q = m2�2

2
; R = m2

4
and G(�) = ns(�) � ds(�), we obtain the Jacobi

elliptic function solutions

V (�) =
�

3�

"
1�

p
2 cs(�)p
m2 � 2

#
; (3.1.22)

where � =
q
� 12�2

(m2�2)(2�2�9�)�2x�
q

108�2�
(m2�2)(2�2�9�)2 t.

Case 12. Choosing P = m2

4
; Q = m2�2

2
; R = m2

4
and G(�) =

p
m2 � 1 sd(�) � cd(�), we ob-

tain the Jacobi elliptic function solutions

V (�) =
�

3�

"
1�

p
2p

m2 � 2

p
m2 � 1 cd(�) nd(�) +m2 sd(�) nd(�)� sd(�) nd(�)

sd(�) + cd(�)

#
; (3.1.23)

where � =
q
� 12�2

(m2�2)(2�2�9�)�2x�
q

108�2�
(m2�2)(2�2�9�)2 t.

Case 13. Choosing P = �m2(1 � m2); Q = 2m2 � 1; R = 1 and G(�) = sd(�), we obtain
the Jacobi elliptic function solutions

V (�) =
�

3�

�
1� cs(�) nd(�)p

2m2 � 1

�
; (3.1.24)
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where � =
q
� 6�2

(2m2�1)(2�2�9�)�2x�
q

54�2�
(2m2�1)(2�2�9�)2 t.

If m! 1, then we have the same anti-kink soliton wave solutions (3.1.12).

Case 14. Choosing P = m2

4
; Q = m2�2

2
; R = 1

4
and G(�) = sn(�) = [1 � dn(�)], we obtain

the Jacobi elliptic function solutions

V (�) =
�

3�

"
1�

p
2p

m2 � 2
ns(�) cn(�)

�
dn(�) +

m2 sn2(�)

1 + dn(�)

�#
; (3.1.25)

where � =
q
� 12�2

(m2�2)(2�2�9�)�2x�
q

108�2�
(m2�2)(2�2�9�)2 t.

Case 15. Choosing P = �1
4
; Q = m2+1

2
; R = (1�m2)2

4
and G(�) = m cn(�) � dn(�), we obtain the

Jacobi elliptic function solutions

V (�) =
�

3�

"
1� m

p
2 sn(�)p
m2 + 1

#
; (3.1.26)

where � =
q
� 12�2

(m2+1)(2�2�9�)�2x�
q

108�2�
(m2+1)(2�2�9�)2 t.

If m! 1, then we have the same kink soliton wave solutions (3.1.8).

Case 16. Choosing P = (1�m2)2

4
; Q = m2+1

2
; R = 1

4
and G(�) = ds(�) � cs(�), we obtain the

Jacobi elliptic function solutions

V (�) =
�

3�

"
1�

p
2 ns(�)p
m2 + 1

#
; (3.1.27)

where � =
q
� 12�2

(m2+1)(2�2�9�)�2x�
q

108�2�
(m2+1)(2�2�9�)2 t.

If m! 0, then we have the same exact wave solutions (3.1.14).

If m! 1, then we have the same anti-kink soliton wave solutions (3.1.12).

where � =
q
� 12�2

(m2+1)(2�2�9�)�2x�
q

108�2�
(m2+1)(2�2�9�)2 t.

Case 17. Choosing P = 1
4
; Q = m2�2

2
; R = m2

4
and G(�) = dc(�) �

p
1�m2 nc(�), we obtain the
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Jacobi elliptic function solutions

V (�) =
�

3�

"
1�

p
2p

m2 � 2

�
(1�m2) sc(�) nc(�) +

p
1�m2 dc(�) sc(�)

dc(�) +
p
1�m2 nc(�)

�#
; (3.1.28)

where � =
q
� 12�2

(m2�2)(2�2�9�)�2x�
q

108�2�
(m2�2)(2�2�9�)2 t.

Case 18. Choosing P = 1; Q = 2 � 4m2; R = 1 and G(�) = sn(�) dn(�) = cn(�), we obtain the
Jacobi elliptic function solutions

V (�) =
�

3�

�
1� dn(�) cs(�)�m

2 sn(�) cs(�) sd(�) + sn(�) dc(�)p
2� 4m2

�
; (3.1.29)

where � =
q
� 6�2

(2�4m2)(2�2�9�)�2x�
q

54�2�
(2�4m2)(2�2�9�)2 t.

If m! 0, then we have the same exact wave solutions (3.1.11).

Case 19. Choosing P = m4; Q = 2m2 � 4; R = 1 and G(�) = sn(�) cn(�) = dn(�), we obtain
the Jacobi elliptic function solutions

V (�) =
�

3�

�
1� cs(�) cn(�) dc(�)� sn(�) dc(�) +m

2 sd(�) cn(�)p
2m2 � 4

�
; (3.1.30)

where � =
q
� 6�2

(2m2�4)(2�2�9�)�2x�
q

54�2�
(2m2�4)(2�2�9�)2 t.

Case 20. Choosing P = 1; Q = 2m2 + 2; R = 1 � 2m2 +m4 and G(�) = dn(�) cn(�) = sn(�), we
obtain the Jacobi elliptic function solutions

V (�) =
�

3�

�
1� dc(�) dn(�) sd(�) + cs(�) dn(�) +m

2 sd(�) cn(�)p
2m2 + 2

�
; (3.1.31)

where � =
q
� 6�2

(2m2+2)(2�2�9�)�2x�
q

54�2�
(2m2+2)(2�2�9�)2 t.

If m! 0, then Eq. (1.1) has the exact wave solutions

V (�) =
�

3�

�
1� tan(�) + cot(�)p

2

�
; (3.1.32)

where � =
q
� 3�2

(2�2�9�)�2x�
q

27�2�
(2�2�9�)2 t.
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If m! 1, then Eq. (1.1) has the exact wave solutions

V (�) =
�

3�

�
1� 2 tanh(�) + sech(�) csch(�)

2

�
; (3.1.33)

where � =
q
� 3�2

2 (2�2�9�)�2x�
q

27�2�
2 (2�2�9�)2 t.

3.2. Exact wave solutions of Eq. (1.2) using the method of Sec. 2

In this subsection, to solve Eq. (1.2) using the generalized
�
G0

G

�
-expansion method of Sec. 2, we

look for the voltage E(x; t) of the pulse in the traveling form:

E(x; t) = E(�); � = x� vt; (3.2.1)

where v is the propagation velocity of the pulse. Substituting (3.2.1) into Eq. (1.2), we have the
following nonlinear ODE:

E 00(�) + k1E(�) + k2E
2(�) = 0; (3.2.2)

where

k1 = �
12(v2 � v20)
�2v20

, k2 =
6b1v

2

�2v20
: (3.2.3)

Balancing E 00 with E2 gives N = 2. Therefore, (2.4) reduces to

E(�) = a0 + a1

�
G0(�)

G(�)

�
+ a2

�
G0(�)

G(�)

�2
; (3.2.4)

where a0; a1 and a2 are constants to be determined such that a2 6= 0.
Substituting (3.2.4) along with the Jacobi elliptic equation (2.5) into Eq. (3.2.2) and collecting

all the coe¢ cients of
�
G0(�)
G(�)

�i
; (i = 0; 1; :::; 4) and setting them to be zero, we have the following

algebraic equations:�
G0(�)
G(�)

�4
: a22k2 + 6 a2 = 0;�

G0(�)
G(�)

�3
: a1a2k2 + a1 = 0;�

G0(�)
G(�)

�2
: �8 a2Q+ k1a2 + k2 (2 a0a2 + a21) = 0;
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�
G0(�)
G(�)

�
: 2 a0a1k2 � 2Qa1 + a1k1 = 0;�

G0(�)
G(�)

�0
: �8RPa2+2 a2Q2+k2a20+k1a0 = 0: (3.2.5)

On solving the above algebraic equations (3.2.5) using the CAS, we have the following result:

a0 =
2
�
2Q�

p
12PR +Q2

�
k2

; a1 = 0; a2 = �
6

k2
; k1 = �4

p
12PR +Q2; (3.2.6)

where Q2 + 12PR > 0:

Substituting (3.2.6) into (3.2.4) yields

E(�) = � 2
k2

"
2Q�

p
12PR +Q2 � 3

�
G0(�)

G(�)

�2
;

#
; (3.2.7)

where � = x� vt.

With reference to solving Eq. (2.5), we deduce that the Jacobi elliptic function solutions and
other exact solutions of Eq. (1.2) as follows:
Case 1. Choosing P = �m2; Q = 2m2 � 1; R = 1 �m2 and G(�) = cn(�), we obtain the Jacobi
elliptic function solutions

E(�) =
2

k2

h�
4m2 � 2

�
�
p
16m4 � 16m2 + 1� 3 dc2(�) sn2(�)

i
; (3.2.8)

where k1 = �4
p
16m4 � 16m2 + 1.

If m! 0, then Eq. (1.2) has the periodic wave solutions

E(�) =
2

k2

�
(�2� 1)� 3 tan2(�)

�
; (3.2.9)

while, If m! 1, then Eq. (1.2) has the kink soliton wave solutions

E(�) =
2

k2

�
(2� 1)� 3 tanh2(�)

�
; (3.2.10)

where k1 = �4.
Case 2. Choosing P = �1; Q = 2 � m2; R = m2 � 1 and G(�) = dn(�), we obtain the Jacobi
elliptic function solutions

E(�) =
2

k2

h�
4� 2m2

�
�
p
m4 � 16m2 + 16� 3m4 cd2(�) sn2(�)

i
; (3.2.11)
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where k1 = �4
p
m4 � 16m2 + 16.

If m! 1, then we have the same kink soliton wave solutions (3.2.10).

Case 3. Choosing P = 1 � m2; Q = 2 � m2; R = 1 and G(�) = sc(�), we obtain the Jacobi
elliptic function solutions

E(�) =
2

k2

h�
4� 2m2

�
�
p
m4 � 16m2 + 16� 3 ds2(�) nc 2(�)

i
; (3.2.12)

where k1 = �4
p
m4 � 16m2 + 16.

If m! 0, then Eq. (1.2) has the exact wave solutions

E(�) =
2

k2

�
(4� 4)� 3 sec2(�) csc2(�)

�
; (3.2.13)

where k1 = �16.
If m! 1, then we have the same kink soliton wave solutions (3.2.10).

Case 4. Choosing P = 1
4
; Q = 1�2m2

2
; R = 1

4
and G(�) = ns(�) � cs(�), we obtain the Ja-

cobi elliptic function solutions

E(�) =
2

k2

h�
1� 2m2

�
�
p
m4 �m2 + 1� 3 ds2(�)

i
; (3.2.14)

where k1 = �4
p
m4 �m2 + 1.

If m! 0, then Eq. (1.2) has the exact wave solutions

E(�) =
2

k2

�
(1� 1)� 3 csc2(�)

�
; (3.2.15)

where k1 = �4.
If m! 1, then Eq. (1.2) has the anti-bell soliton wave solution

E(�) =
2

k2

�
(�1� 1)� 3 csch2(�)

�
; (3.2.16)

where k1 = �4.
Case 5. Choosing P = �1; Q = 2 � m2; R = m2 � 1 and G(�) = nd(�), we obtain the Jacobi
elliptic function solutions

E(�) =
2

k2

h�
4� 2m2

�
�
p
m4 � 16m2 + 16� 3m4 cn2(�) sd2(�)

i
; (3.2.17)

where k1 = �4
p
m4 � 16m2 + 16.
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If m! 1, then we have the same kink soliton wave solutions (3.2.10).

Case 6. Choosing P = 1 � m2; Q = 2 � m2; R = 1 and G(�) = cs(�), we obtain the Jacobi
elliptic function solutions

E(�) =
2

k2

h�
4� 2m2

�
�
p
m4 � 16m2 + 16� 3 dc2(�) ns2(�)

i
; (3.2.18)

where k1 = �4
p
m4 � 16m2 + 16.

If m! 0, then we have the same exact wave solutions (3.2.13).
If m! 1, then we have the same kink soliton wave solutions (3.2.10).

Case 7. Choosing P = m2(m2 � 1); Q = 2m2 � 1; R = 1 and G(�) = ds(�), we obtain the
Jacobi elliptic function solutions

E(�) =
2

k2

h�
4m2 � 2

�
�
p
16m4 � 16m2 + 1� 3 cd2(�) ns2(�)

i
; (3.2.19)

where k1 = �4
p
16m4 � 16m2 + 1.

If m! 0, then Eq. (1.2) has the periodic wave solutions

E(�) =
�2
k2

�
(2� 1) + 3 cot2(�)

�
; (3.2.20)

where k1 = �4.
If m! 1, then Eq. (1.2) has the anti-kink soliton wave solutions

E(�) =
2

k2

�
(2� 1)� 3 coth2(�)

�
; (3.2.21)

where k1 = �4.
Case 8. Choosing P = m2�1

4
; Q = m2+1

2
; R = m2�1

4
and G(�) = m sd(�) � nd(�), we obtain the

Jacobi elliptic function solutions

E(�) =
2

k2

h�
m2 + 1

�
�
p
m4 �m2 + 1� 3m2 cd2(�)

i
; (3.2.22)

where k1 = �4
p
m4 �m2 + 1.

Case 9. Choosing P = 1�m2

4
; Q = m2+1

2
; R = 1�m2

4
and G(�) = nc(�) � sc(�), we obtain the

Jacobi elliptic function solutions

E(�) =
2

k2

h�
1 +m2

�
�
p
m4 �m2 + 1� 3 dc2(�)

i
; (3.2.23)
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where k1 = �4
p
m4 �m2 + 1.

If m! 0, then we have the same exact wave solutions (3.2.15).
If m! 1, then we have the same kink soliton wave solutions (3.2.10).

Case 10. Choosing P = m2

4
; Q = m2�2

2
; R = m2

4
and G(�) =

p
m2 � 1 sd(�)� cd(�), we obtain the

Jacobi elliptic function solutions

E(�) =
2

k2

��
m2 � 2

�
�
p
m4 �m2 + 1� 3(m

2 sn(�) +
p
m2 � 1 cn(�)� sn(�))2

dn2(�)(
p
m2 � 1 sn(�) + cn(�))2

�
; (3.2.24)

where k1 = �4
p
m4 �m2 + 1.

Case 11. Choosing P = �m2(1 � m2); Q = 2m2 � 1; R = 1 and G(�) = sd(�), we obtain the
Jacobi elliptic function solutions

E(�) =
2

k2

h�
4m2 � 2

�
�
p
16m4 � 16m2 + 1� 3 cs2(�) nd2(�)

i
; (3.2.25)

where k1 = �4
p
16m4 � 16m2 + 1.

If m! 0, then we have the same periodic wave solutions (3.2.20).
If m! 1, then we have the same anti-kink soliton wave solutions (3.2.21).

Case 12. Choosing P = (1�m2)2

4
; Q = m2+1

2
; R = 1

4
and G(�) = ds(�) � cs(�), we obtain the

Jacobi elliptic function solutions

E(�) =
2

k2

h�
m2 + 1

�
�
p
m4 �m2 + 1� 3 ns2(�)

i
; (3.2.26)

where k1 = �4
p
m4 �m2 + 1.

If m! 0, then we have the same exact wave solutions (3.2.15).

If m! 1, then we have the same anti-kink soliton wave solutions (3.2.21).

Case 13. Choosing P = 1; Q = 2 � 4m2; R = 1 and G(�) = sn(�) dn(�) = cn(�), we obtain
the Jacobi elliptic function solutions

E(�) =
2

k2

��
4� 8m2

�
� 4
p
m4 �m2 + 1� 3(�2m

2 sn2(�) +m2 sn4(�) + 1)2

cn2(�) sn2(�) dn2(�)

�
; (3.2.27)

where k1 = �16
p
m4 �m2 + 1.

If m! 0, then Eq. (1.2) has the exact wave solutions

E(�) =
2

k2

�
(4� 4)� 3(tan(�) + cot(�))2

�
; (3.2.28)
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where k1 = �16.
If m! 1, then Eq. (1.2) has the exact wave solutions

E(�) =
2

k2

�
(�4� 4)� 3 sech2(�) csch2(�)

�
; (3.2.29)

where k1 = �16.
Case 14. Choosing P = m4; Q = 2m2 � 4; R = 1 and G(�) = sn(�) cn(�) = dn(�), we obtain the
Jacobi elliptic function solutions

E(�) =
2

k2

��
4m2 � 8

�
� 4
p
m4 �m2 + 1� 3(m

2 sn4(�)� 2 sn2(�) + 1)2

dn2(�) sn2(�) cn2(�)

�
; (3.2.30)

where k1 = �16
p
m4 �m2 + 1.

If m! 0, then Eq. (1.2) has the exact wave solutions

E(�) =
2

k2

�
(�8� 4)� 3(cot(�)� tan(�))2

�
; (3.2.31)

where k1 = �16.
If m! 1, then we have the exact wave solutions (3.2.29).

Case 15. Choosing P = 1; Q = 2m2 + 2; R = 1 � 2m2 +m4 and G(�) = dn(�) cn(�) = sn(�), we
obtain the Jacobi elliptic function solutions

E(�) =
2

k2

��
4m2 + 4

�
� 4
p
m4 �m2 + 1� 3 (m2 sn4(�)� 1)2

sn2(�) cn2(�) dn2(�)

�
; (3.2.32)

where k1 = �16
p
m4 �m2 + 1.

If m! 0, then we have the same exact wave solutions (3.2.28).
If m! 1, then Eq. (1.2) has the exact wave solutions

E(�) =
2

k2

�
(8� 4)� 3(tanh(�) + coth(�))2

�
; (3.2.33)

where k1 = �16.
Case 16. Choosing P = m2; Q = �(1 + m2); R = 1 and G(�) = sn(�), we obtain the Jacobi
elliptic function solutions

E(�) =
2

k2

h�
�2� 2m2

�
�
p
m4 + 14m2 + 1� 3 cs2(�) dn2(�)

i
; (3.2.34)

where k1 = �4
p
m4 + 14m2 + 1.

If m! 0, then we have the same periodic wave solutions (3.2.20).
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If m! 1, then we have the same exact wave solutions (3.2.29).

Case 17. Choosing P = 1; Q = �(1 + m2); R = m2 and G(�) = ns(�), we obtain the Jacobi
elliptic function solutions

E(�) =
2

k2

h�
�2� 2m2

�
�
p
m4 + 14m2 + 1� 3 cn2(�) ds2(�)

i
; (3.2.35)

where k1 = �4
p
m4 + 14m2 + 1.

If m! 0, then we have the same periodic wave solutions (3.2.20).
If m! 1, then we have the same exact wave solutions (3.2.29).

Case 18. Choosing P = 1 � m2; Q = 2m2 � 1; R = �m2 and G(�) = nc(�), we obtain the
Jacobi elliptic function solutions

E(�) =
2

k2

h�
4m2 � 2

�
�
p
16m4 � 16m2 + 1� 3 dn2(�) sc2(�)

i
; (3.2.36)

where k1 = �4
p
16m4 � 16m2 + 1.

If m! 0, then we have the same periodic wave solutions (3.2.9).
If m! 1, then we have the same kink soliton wave solutions (3.2.10).

1 Physical explanations of the results

We have shown in section 3, that the exact solutions of the higher order nonlinear PDEs (1.1) and
(1.2) are written in terms of the Jacobi elliptic functions. Also, we have found spetial solutions
from the Jacobi elliptic function solutions when the modulus m = 1 and m = 0: These solutions
are kink, anti-kink shaped soliton solutions, bell-shaped soliton solutions, anti bell-shaped soliton
solutions, hyperbolic solutions and periodic solutions. In this section, we will present some graphs
of these solutions by choosing suitable values of the parameters to visualize the mechanism of the
original nonlinear PDEs. Using mathematical software CAS, we organize these graphs as follows:
In Fig. 1, the plots of the solutions (3.1.7) are drawn by choosing � = � = � = 1, the modulus
m = 0:99 and m = 1 which is the kink soliton wave solutions (3.1.7). In Fig. 2 , the plots of the
solutions (3.1.20) are drawn by choosing � = 1; � = � = 2, the modulus m = 0:1 and m = 0
which is the exact wave solutions (3.1.20). In Fig. 3, the plot of the solutions (3.2.27) is drawn
by choosing k2 = �1; v = 1, the modulus m = 0:5 , m = 1 which is the hyperbolic wave solutions
(3.2.29) and m = 0 which is the periodic wave solutions (3.2.28). All these �gures are new and
not found elsewhere, which include the graphs of the Jacobi elliptic functions.
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Fig. 1. Plots of the solutions (3.1.7) with � = � = � = 1; m = 0:99; 1:
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Fig. 2. Plots of the solutions (3.1.20) with � = 1; � = � = 2; m = 0:1; 0:
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Fig. 3. Plots of the solutions (3.2.27) with k2 = �1; v = 1; m = 0:5; 1; 0:

5. Conclusions.

This article, based on the generalized (G0=G)-expansion method described in Section 2 with the
aid of symbolic computation CAS, we have obtained many new types of Jacobi elliptic function
solutions for the two higher-order nonlinear PDEs (1.1) and (1.2) describing the nonlinear low-
pass electrical lines and pulse narrowing nonlinear transmission lines respectively. Further, we have
found other exact solutions of the nonlinear PDEs (1.1) and (1.2) when the modulus of the Jacobi
elliptic functions m takes 1; 0. these solutions include, kink and anti-kink soliton wave solutions,
bell (bright) and anti-bell (dark) soliton wave solutions and periodic solutions. Comparing our
results in this article with the well-known results of [23, 24, 32, 34], we conclude that our results are
di¤erent and new, which are not found elsewhere. We notice that solutions obtained though the
generalized (G0=G)-expansion method here are more general. The proposed method of this article
is e¤ective and can be applied to many other nonlinear PDEs. Finally, all solutions obtained in
this article have been checked with the CAS by putting them back into the original equations (1.1)
and (1.2).
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